论文标题
定期和准周期驱动的玻璃酿造动力学
Periodically and Quasi-periodically Driven Dynamics of Bose-Einstein Condensates
论文作者
论文摘要
我们在Bogoliubov框架内定期或准周期调节散射长度时,研究了Bose-Einstein冷凝物的量子动力学。对于定期驱动的情况,我们考虑了两个协议,其中调制为方波或正弦波。在每个固定动量的两个方案中,都有加热和非加热阶段,以及它们之间的相边界。这两个阶段的区别是激发粒子的数量是否呈指数增长。对于准周期驱动的情况,我们再次考虑两个方案:方波准周期性,其中几乎所有参数都会产生激发,作为fibonacci-type quasi-casi-crystal的类似物;以及正弦波准周期性,其中非加热阶段存在有限的度量参数状态。我们还为这两种方案绘制了霍夫斯塔特蝴蝶的类似物。
We study the quantum dynamics of Bose-Einstein condensates when the scattering length is modulated periodically or quasi-periodically in time within the Bogoliubov framework. For the periodically driven case, we consider two protocols where the modulation is a square-wave or a sine-wave. In both protocols for each fixed momentum, there are heating and non-heating phases, and a phase boundary between them. The two phases are distinguished by whether the number of excited particles grows exponentially or not. For the quasi-periodically driven case, we again consider two protocols: the square-wave quasi-periodicity, where the excitations are generated for almost all parameters as an analog of the Fibonacci-type quasi-crystal; and the sine-wave quasi-periodicity, where there is a finite measure parameter regime for the non-heating phase. We also plot the analogs of the Hofstadter butterfly for both protocols.