论文标题
模拟Pulsar故障:$ n $ - 求解超级流体涡流的求解器二维
Simulating pulsar glitches: an $N$-body solver for superfluid vortex motion in two dimensions
论文作者
论文摘要
旋转的超流体形成一系列量化的涡流线,这些涡流线决定其角速度。阵列在减速,耗散和固定力的影响下阵列的痉挛性演变被认为是脉冲星故障现象的原因,突然的跳跃中性恒星的自旋频率突然跳跃。我们描述并实现了一种$ n $ - 体的方法,用于在二维中模拟多达5000个涡流的运动,并介绍验证该方法的数值实验的结果,包括涡旋环的稳定性以及Abrikosov Array的耗散形成。涡流雪崩通常在模拟中常规发生,当涡旋 - 涡流排斥共集体触发脱粘事件的链时,与先前使用Gross-pitaevskii方程的较小规模的研究一致。雪崩大小和等待时间的概率密度函数与指数和对数正态分布一致。我们发现小故障大小和等待时间之间的相关性较弱,与脉冲星毛刺活动的天文数据和元模型一致,作为州依赖性的泊松过程或布朗压力蓄能过程,并且与阈值触发的应力释放模型不一致,单个全球应力储层。在故障之前和之后,分析了模拟体积中有效应力的空间分布。
A rotating superfluid forms an array of quantized vortex lines which determine its angular velocity. The spasmodic evolution of the array under the influence of deceleration, dissipation, and pinning forces is thought to be responsible for the phenomenon of pulsar glitches, sudden jumps in the spin frequency of rotating neutron stars. We describe and implement an $N$-body method for simulating the motion of up to 5000 vortices in two dimensions and present the results of numerical experiments validating the method, including stability of a vortex ring and dissipative formation of an Abrikosov array. Vortex avalanches occur routinely in the simulations, when chains of unpinning events are triggered collectively by vortex-vortex repulsion, consistent with previous, smaller-scale studies using the Gross-Pitaevskii equation. The probability density functions of the avalanche sizes and waiting times are consistent with both exponential and log-normal distributions. We find weak correlations between glitch sizes and waiting times, consistent with astronomical data and meta-models of pulsar glitch activity as a state-dependent Poisson process or a Brownian stress-accumulation process, and inconsistent with a threshold-triggered stress-release model with a single, global stress reservoir. The spatial distribution of the effective stress within the simulation volume is analysed before and after a glitch.