论文标题

嵌入面向排名的建议系统图

Embedding Ranking-Oriented Recommender System Graphs

论文作者

Hekmatfar, Taher, Haratizadeh, Saman, Goliaei, Sama

论文摘要

基于图形的推荐系统(GRS)分析了数据图形表示中的结构信息,以提出更好的建议,尤其是当直接用户 - 项目关系数据稀疏时。构成主要建议系统的排名为导向的GRS,主要使用偏好(或等级)数据的图形表示来测量节点相似性,他们可以从中使用基于邻里的机制推断出建议列表。在本文中,我们提出了PGREC,这是一种基于图表的新型建议推荐框架。 PGREC通过称为Prefgraph的新型图形结构对用户而不是项目的偏好进行建模。然后,通过改进的嵌入方法来利用此图,利用分解和深度学习方法,以提取代表用户,项目和偏好的向量。然后将所得的嵌入用于预测用户未知的成对偏好,从中可以从中推断出最终的建议列表。我们已经评估了针对基于模型和基于邻里的建议方法的状态的提议方法的性能,我们的实验表明,在不同的Movielens数据集中,PGREC优于NDCG@10的基线算法最高3.2%。

Graph-based recommender systems (GRSs) analyze the structural information in the graphical representation of data to make better recommendations, especially when the direct user-item relation data is sparse. Ranking-oriented GRSs that form a major class of recommendation systems, mostly use the graphical representation of preference (or rank) data for measuring node similarities, from which they can infer a recommendation list using a neighborhood-based mechanism. In this paper, we propose PGRec, a novel graph-based ranking-oriented recommendation framework. PGRec models the preferences of the users over items, by a novel graph structure called PrefGraph. This graph is then exploited by an improved embedding approach, taking advantage of both factorization and deep learning methods, to extract vectors representing users, items, and preferences. The resulting embedding are then used for predicting users' unknown pairwise preferences from which the final recommendation lists are inferred. We have evaluated the performance of the proposed method against the state of the art model-based and neighborhood-based recommendation methods, and our experiments show that PGRec outperforms the baseline algorithms up to 3.2% in terms of NDCG@10 in different MovieLens datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源