论文标题

在循环量子重力模型中协方差的无效结果

A no-go result for covariance in models of loop quantum gravity

论文作者

Bojowald, Martin

论文摘要

基于这样的观察,Schwarzschild-type溶液的外部空间时间允许两个对称切片,一个静态的球体对称性和一个及时的同质均匀的切片,对量子宇宙学模型所提出的引力动力学的修改可用于得出相应的对应的对称的Sperberified Spherified Spernifield Spernifield Modized sperifientific spemmetific spemmetific spemmetific spemmetific spemmetific spermetriptix。通常,与均匀切片相比,球形对称性的协变理论通常更受限制,如果它们是本地的,则由$ 1+1 $二维的Dilaton模型给出。如下所示,循环量子宇宙学中使用的修改没有相应的协变为球体对称理论。因此,循环量子宇宙学模型以切片独立性的形式违反了一般的协方差。只有一种与非利马尼亚几何形状的一般形式的协方差可以始终如一地描述回路量子重力模型中的时空。

Based on the observation that the exterior space-times of Schwarzschild-type solutions allow two symmetric slicings, a static spherically symmetric one and a timelike homogeneous one, modifications of gravitational dynamics suggested by symmetry-reduced models of quantum cosmology can be used to derive corresponding modified spherically symmetric equations. Generally covariant theories are much more restricted in spherical symmetry compared with homogeneous slicings, given by $1+1$-dimensional dilaton models if they are local. As shown here, modifications used in loop quantum cosmology do not have a corresponding covariant spherically symmetric theory. Models of loop quantum cosmology therefore violate general covariance in the form of slicing independence. Only a generalized form of covariance with a non-Riemannian geometry could consistently describe space-time in models of loop quantum gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源