论文标题
扭曲量子双重模型的拓扑订单中的电磁二元性
Electric-Magnetic duality in twisted quantum double model of topological orders
论文作者
论文摘要
我们得出了扭曲的量子双重(TQD)型号TQD $(G,α)$ ---离散Dijkgraaf-witten型号的扭曲量子双重(TQD)型号的部分电力(PEM)二元性转换,并带有有限的量规$ G $,有有限的量规组$ G $,它具有ABELIAN普通子组$ n $ n $,and三元素$ n $,以及三个蛋白酶$ n cocycle $ n cocycle $α\ n h.两种TQD模型之间的任何等效性,例如TQD $(G,α)$和TQD $(G',α')$,可以实现为PEM二元转换,它仅交换了$ n $ charuges and $ n $ fluxes。通过PEM二元性,我们在相应的TQD代数$ d^α(g)$和$ d^{α'}(g')$之间构建了显式同构,并在一个模型和另一个模型的任何人之间得出了地图。
We derive a partial electric-magnetic (PEM) duality transformation of the twisted quantum double (TQD) model TQD$(G,α)$---discrete Dijkgraaf-Witten model---with a finite gauge group $G$, which has an Abelian normal subgroup $N$, and a three-cocycle $α\in H^3(G,U(1))$. Any equivalence between two TQD models, say, TQD$(G,α)$ and TQD$(G',α')$, can be realized as a PEM duality transformation, which exchanges the $N$-charges and $N$-fluxes only. Via the PEM duality, we construct an explicit isomorphism between the corresponding TQD algebras $D^α(G)$ and $D^{α'}(G')$ and derive the map between the anyons of one model and those of the other.