论文标题

计算机断层扫描的诊断精度,用于识别可疑Covid-19患者的住院治疗

Diagnostic Accuracy of Computed Tomography for Identifying Hospitalization in Patients with Suspected COVID-19

论文作者

Morozov, Sergey P., Reshetnikov, Roman V., Gombolevskiy, Victor A., Ledikhova, Natalia V., Blokhin, Ivan A., Kljashtorny, Vladislav G., Mokienko, Olesya A., Vladzymyrskyy, Anton V.

论文摘要

COVID-19筛选中计算机断层扫描(CT)使用的争议与胸部CT的模棱两可的特征有关。使用RT-PCR作为参考标准计算的CT灵敏度和特异性的报道值差异很大。这项研究的目的是使用替代方法重新评估CT的诊断和预后价值。这项研究包括973个有症状的共同19岁患者42 $ \ pm $ 17岁,女性为56%。我们使用“ CT0-4”分级系统回顾了初始和随访研究之间的疾病动态。敏感性和特异性被计算为条件概率,相对于最初的CT研究结果,患者的病情会改善或恶化。为了计算负(NPV)和正(PPV)预测值,我们估计了莫斯科中的Covid-19患病率。我们使用了几种具有不同参数的Arima和EST模型,以适应从2020年3月6日至2020年7月20日的Covid-19总案例的数据,并预测发病率。 “ CT0-4”等级量表表现出低灵敏度(28%),但特异性高(95%)。描述莫斯科大流行的最佳统计模型是具有乘法趋势,误差和季节类型的ETS。根据我们的计算,预测患病率为2.1%,NPV和PPV的值相应地为98%和10%。我们将低灵敏度和PPV值与患有严重症状的患者的样本量相关联,用于测量这些特定特征的患者的样本量较小。 “ CT0-4”分级量表具有高度特异性和可预测性,可识别对Covid-19患者的医院的入院。尽管准确性模棱两可,但胸部CT被证明是大流行期间患者管理的有效实用工具,前提是可以使用必要的基础设施和人力资源。

The controversy of computed tomography (CT) use in COVID-19 screening is associated with ambiguous characteristics of chest CT as a diagnostic test. The reported values of CT sensitivity and specificity calculated using RT-PCR as a reference standard vary widely. The objective of this study was to reevaluate the diagnostic and prognostic value of CT using an alternative approach. This study included 973 symptomatic COVID-19 patients aged 42 $\pm$ 17 years, 56% females. We reviewed the disease dynamics between the initial and follow-up CT studies using a "CT0-4" grading system. Sensitivity and specificity were calculated as conditional probabilities that a patient's condition would improve or deteriorate relative to the initial CT study results. For the calculation of negative (NPV) and positive (PPV) predictive values, we estimated the COVID-19 prevalence in Moscow. We used several ARIMA and EST models with different parameters to fit the data on total cases of COVID-19 from March 6, 2020, to July 20, 2020, and forecast the incidence. The "CT0-4" grading scale demonstrated low sensitivity (28%) but high specificity (95%). The best statistical model for describing the pandemic in Moscow was ETS with multiplicative trend, error, and season type. According to our calculations, with the predicted prevalence of 2.1%, the values of NPV and PPV would be 98% and 10%, correspondingly. We associate the low sensitivity and PPV values with the small sample size of the patients with severe symptoms and non-optimal methodological setup for measuring these specific characteristics. The "CT0-4" grading scale was highly specific and predictive for identifying admissions to hospitals of COVID-19 patients. Despite the ambiguous accuracy, chest CT proved to be an effective practical tool for patient management during the pandemic, provided that the necessary infrastructure and human resources are available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源