论文标题
用于光子计数高对比度应用的随机变化图像平面的第一个原理模拟器
First Principle Simulator of a Stochastically Varying Image Plane for Photon-Counting High Contrast Applications
论文作者
论文摘要
光学和近红外微波动力电感探测器或MKID是具有固有光谱分辨率的低温检测器,能够立即注册具有潜在的没有错误计数或读数噪声的单个光子。这些特性通过启用基于光子统计的行星歧视技术以及对较短的时间表上的常规噪声提取技术进行启用,从而使MKID具有直接成像的变化。这些探测器正在快速发展的过程中,因此,尚未量化其性能增强潜力的全部范围。 MKID系外行星直接成像模拟器(Medis)是一种通用的端到端数值模拟器,用于使用MKIDS进行高对比度观测。模拟器利用当前的光学传播库,并使用新的MKIDS模拟模块增强它们,以提供检测过程中存在的许多降解效应的实用模型。我们使用MEDI来证明当将常规差分成像技术应用于低频率,短持续时间观察时,各种MKID特性的变化如何影响对比度分离性能。 我们表明,在连续分离时提高性能将需要提高冠状动脉后较高残留通量时的最大计数率或像素采样。我们预测,从当前80%的当前工具获得的价值中获取像素收益率,并将其增加到100%,将会改善$ \ sim $ 4 $ 4,在3 $λ/d $和6 $λ/d $时,以3 $λ/d $和$ \ sim $ 8。在这种低通量制度中,实现更好的对比度性能将需要利用光子到达时间统计中编码的信息。
Optical and near-infrared Microwave Kinetic Inductance Detectors, or MKIDs, are low-temperature detectors with inherent spectral resolution that are able to instantly register individual photons with potentially no false counts or readout noise. These properties make MKIDs transformative for exoplanet direct imaging by enabling photon-statistics-based planet-discrimination techniques as well as performing conventional noise-subtraction techniques on shorter timescales. These detectors are in the process of rapid development, and as such, the full extent of their performance enhancing potential has not yet be quantified. MKID Exoplanet Direct Imaging Simulator, or MEDIS, is a general-purpose end-to-end numerical simulator for high-contrast observations with MKIDs. The simulator exploits current optical propagation libraries and augments them with a new MKIDs simulation module to provide a pragmatic model of many of the degradation effects present during the detection process. We use MEDIS to demonstrate how changes in various MKID properties affect the contrast-separation performance when conventional differential imaging techniques are applied to low-flux, short duration observations. We show that to improve performance at close separations will require increasing the maximum count rate or pixel sampling when there is high residual flux after the coronagraph. We predict that taking pixel yield from the value achieved by current instruments of 80% and increasing it to 100% would result in an improvement in contrast of a factor of $\sim$ 4 at 3$λ/D$ and $\sim$ 8 at 6$λ/D$. Achieving better contrast performance in this low flux regime would then require exploiting the information encoded in the photon arrival time statistics.