论文标题
学习可以在合作中适应多玩家随机游戏
Learning enables adaptation in cooperation for multi-player stochastic games
论文作者
论文摘要
自然人群中个人之间的相互作用通常发生在动态变化的环境中。长期以来,了解环境变化在人群动态中的作用一直是理论生态学和人口生物学中的一个核心主题。但是,在挑战社会困境(例如,“公地的悲剧”)中,个人如何调节自己的行为以适应环境波动的关键问题。利用进化游戏理论和随机游戏,我们开发了一个游戏理论框架,该框架结合了强化学习的适应性机制,以研究合作行为是否可以在不断变化的小组交互环境中发展。当玩家的动作选择仅受到过去的增援略有影响时,我们构建了一个分析条件,以确定是否可以比起叛逃。直觉上,这种情况揭示了环境如何以及如何调节合作困境。在我们的模型架构下,我们还将这种学习机制与两个非学习决策规则进行了比较,并且我们发现,学习显着改善了社会困境薄弱的合作倾向,并且急剧对比,阻碍了在强大的社会困境中的合作。我们的结果表明,在复杂的社会生态困境中,学习可以使个人适应各种环境。
Interactions among individuals in natural populations often occur in a dynamically changing environment. Understanding the role of environmental variation in population dynamics has long been a central topic in theoretical ecology and population biology. However, the key question of how individuals, in the middle of challenging social dilemmas (e.g., the "tragedy of the commons"), modulate their behaviors to adapt to the fluctuation of the environment has not yet been addressed satisfactorily. Utilizing evolutionary game theory and stochastic games, we develop a game-theoretical framework that incorporates the adaptive mechanism of reinforcement learning to investigate whether cooperative behaviors can evolve in the ever-changing group interaction environment. When the action choices of players are just slightly influenced by past reinforcements, we construct an analytical condition to determine whether cooperation can be favored over defection. Intuitively, this condition reveals why and how the environment can mediate cooperative dilemmas. Under our model architecture, we also compare this learning mechanism with two non-learning decision rules, and we find that learning significantly improves the propensity for cooperation in weak social dilemmas, and, in sharp contrast, hinders cooperation in strong social dilemmas. Our results suggest that in complex social-ecological dilemmas, learning enables the adaptation of individuals to varying environments.