论文标题

通过输入扰动,轴对准决策森林的学习表示

Learning Representations for Axis-Aligned Decision Forests through Input Perturbation

论文作者

Bruch, Sebastian, Pfeifer, Jan, Guillame-bert, Mathieu

论文摘要

长期以来,与轴线一致的决策森林一直是用于建模表格数据的机器学习算法的领先类别。在许多机器学习的应用中,例如学习到级别,决策森林表现出色。他们还具有其他令人垂涎的特征,例如可解释性。尽管迄今为止,决策森林仍未消耗原始的结构化数据,例如文本或为其学习有效表示,这是近年来深神经网络成功的一个因素。尽管存在构建平滑决策林以实现表示形式学习的方法,但所得模型仅是名称的决策林:它们不再与轴线平整,使用随机决策或不可解释。此外,现有方法都不适合需要转移学习治疗的问题。在这项工作中,我们提出了一项新颖但直观的建议,以实现对决策森林的代表性学习,而无需施加新的限制或需要进行结构性变化。我们的模型只是一个决策森林,可能使用任何森林学习算法在深层神经网络上进行了训练。通过通过输入扰动(纯粹的分析程序)近似决策林的梯度,决策林指导神经网络学习或进行微调表示。我们的框架的优势是它适用于任何任意决策森林,并且允许使用任意深层神经网络来表示学习。我们通过实验合成和基准分类数据集证明了我们的提案的可行性和有效性。

Axis-aligned decision forests have long been the leading class of machine learning algorithms for modeling tabular data. In many applications of machine learning such as learning-to-rank, decision forests deliver remarkable performance. They also possess other coveted characteristics such as interpretability. Despite their widespread use and rich history, decision forests to date fail to consume raw structured data such as text, or learn effective representations for them, a factor behind the success of deep neural networks in recent years. While there exist methods that construct smoothed decision forests to achieve representation learning, the resulting models are decision forests in name only: They are no longer axis-aligned, use stochastic decisions, or are not interpretable. Furthermore, none of the existing methods are appropriate for problems that require a Transfer Learning treatment. In this work, we present a novel but intuitive proposal to achieve representation learning for decision forests without imposing new restrictions or necessitating structural changes. Our model is simply a decision forest, possibly trained using any forest learning algorithm, atop a deep neural network. By approximating the gradients of the decision forest through input perturbation, a purely analytical procedure, the decision forest directs the neural network to learn or fine-tune representations. Our framework has the advantage that it is applicable to any arbitrary decision forest and that it allows the use of arbitrary deep neural networks for representation learning. We demonstrate the feasibility and effectiveness of our proposal through experiments on synthetic and benchmark classification datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源