论文标题

最佳材料,最大近场辐射传热

Optimal materials for maximum near-field radiative heat transfer

论文作者

Zhang, Lang, Miller, Owen D.

论文摘要

我们考虑所有因果散装材料,2D材料和超材料的空间,以最大程度地近场辐射传热(RHT)。因果关系限制了可能发生等离子体反应的带宽,解释了理想材料中的两个关键特征:较小的背景介电性(最小的2D材料中的高能量过渡)和类似Drude的自由载体响应,这些反应共同最佳地产生10x增强功能,超出了理论上的态度。我们将透明的导电氧化物,III-硝酸盐和石墨烯视为应提供几乎理想的近场RHT速率的材料,如果掺杂以表现出我们称为“近场维也纳频率”的等离子共振。深层波长的模式可以提供边际进一步的增长,而牺牲了极小的特征尺寸。最佳材料在300K温度下在19μm处的损耗率和等离激元反应,这表明在中部至远红外波长的等离子间有新的机会,载体浓度较低,无需最大程度地减少损失。

We consider the space of all causal bulk materials, 2D materials, and metamaterials for maximum near-field radiative heat transfer (RHT). Causality constrains the bandwidth over which plasmonic response can occur, explaining two key traits in ideal materials: small background permittivities (minimal high-energy transitions in 2D materials), and Drude-like free-carrier response, which together optimally yield 10X enhancements beyond the theoretical state-of-the-art. We identify transparent conducting oxides, III-Nitrides, and graphene as materials that should offer nearly ideal near-field RHT rates, if doped to exhibit plasmonic resonances at what we term "near-field Wien frequencies." Deep-subwavelength patterning can provide marginal further gains, at the expense of extremely small feature sizes. Optimal materials have moderate loss rates and plasmonic response at 19 μm for 300K temperature, suggesting a new opportunity for plasmonics at mid- to far-infrared wavelengths, with low carrier concentrations and no requirement to minimize loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源