论文标题
一种收敛的后加工不连续的盖尔金方法,用于不可压缩的流量
A convergent post-processed discontinuous Galerkin method for incompressible flow with variable density
论文作者
论文摘要
我们为不可压缩的Navier提出了一种线性化的半图像和脱钩的有限元方法,即具有可变密度的stokes方程。我们的方法是完全离散的,并且证明是无条件稳定的。速度方程是通过H1符合的有限元方法求解的,并为密度方程式采用了带有后加工速度的上风盖尔金有限元法。事实证明,所提出的方法是在三维凸多面体结构域中近似合理平滑溶液中收敛的。
We propose a linearized semi-implicit and decoupled finite element method for the incompressible Navier--Stokes equations with variable density. Our method is fully discrete and shown to be unconditionally stable. The velocity equation is solved by an H1-conforming finite element method, and an upwind discontinuous Galerkin finite element method with post-processed velocity is adopted for the density equation. The proposed method is proved to be convergent in approximating reasonably smooth solutions in three-dimensional convex polyhedral domains.