论文标题
在一个,两个和三个维度中,M-Smothers的PDE演变
PDE Evolutions for M-Smoothers in One, Two, and Three Dimensions
论文作者
论文摘要
本地的M-Smoorth是有趣的信号和图像处理技术,并与其他方法有许多连接。在我们的论文中,我们得出了一个偏微分方程(PDE)的家族,该家族导致一个,二和三维作为基于本地订单的限制过程,该过程基于本地订单-P $ - 在一个球中,其半径趋于零。订单$ p $可以采用任何非零值$> -1 $,也允许负值。与文献的结果相反,我们在与空间连续的情况下表明,对于$ p \ to 0 $,而是$ p \ to -1 $。将我们的过滤器类扩展到小于$ -1 $的$ p $ - 价值允许包括,例如经典图像锐化了Gabor的流动。我们在1D,2D和3D中得出的PDE显示出较大的结构相似性。由于我们的PDE类是高度各向异性的,并且可能包含向后的抛物线运算符,因此很难设计足够的数值方法。我们提出了满足离散最大原则的$ l^\ infty $稳定的显式有限差方案,可满足最低原理,提供出色的旋转不变性,并采用了四个分数步骤,以允许更大的时间步长尺寸。尽管它近似于抛物线PDE,但它受益于双曲PDE的数字稳定概念。我们的2D实验表明,$ p <1 $的PDE具有特定的关注:它们的后向抛物线术语创造了有利的锐化属性,而它们似乎保持了平均曲率运动的强大简化属性。
Local M-smoothers are interesting and important signal and image processing techniques with many connections to other methods. In our paper we derive a family of partial differential equations (PDEs) that result in one, two, and three dimensions as limiting processes from M-smoothers which are based on local order-$p$ means within a ball the radius of which tends to zero. The order $p$ may take any nonzero value $>-1$, allowing also negative values. In contrast to results from the literature, we show in the space-continuous case that mode filtering does not arise for $p \to 0$, but for $p \to -1$. Extending our filter class to $p$-values smaller than $-1$ allows to include e.g. the classical image sharpening flow of Gabor. The PDEs we derive in 1D, 2D, and 3D show large structural similarities. Since our PDE class is highly anisotropic and may contain backward parabolic operators, designing adequate numerical methods is difficult. We present an $L^\infty$-stable explicit finite difference scheme that satisfies a discrete maximum--minimum principle, offers excellent rotation invariance, and employs a splitting into four fractional steps to allow larger time step sizes. Although it approximates parabolic PDEs, it consequently benefits from stabilisation concepts from the numerics of hyperbolic PDEs. Our 2D experiments show that the PDEs for $p<1$ are of specific interest: Their backward parabolic term creates favourable sharpening properties, while they appear to maintain the strong shape simplification properties of mean curvature motion.