论文标题
具有基于度距离的随机图的矩阵的四个拉普拉斯型能的渐近值
Asymptotic values of four Laplacian-type energies for matrices with degree-distance-based entries of random graphs
论文作者
论文摘要
令$ f(d(i,j),d_i,d_j)$为$ i $和$ j $的真实函数对称,并带有$ f(d,(1+o(1+o(1))np,(1+o(1+o(1+o(1))np)=(1+o(1+o(1+o(1))f(d,np,np,np,np,np)$ d = $ d = 1,1,2 $。令$ g $为图,$ d_i $表示顶点$ i $ os $ g $和$ d(i,j)$的程度表示$ g $中的vertices $ i $和$ j $之间的距离。在本文中,我们为ERD $ \ ddot {O} $ \ ddot {o} $ s-s-r $ \ act at racute {e} $ nyi随机图$ \ Mathcal $ \ Mathcal {g} _ {n,p} $,$ p \ in($ p \ in(0),定义了ERD $ \ ddot {o} $ s-s-s-r $ \ atry图{四种加权拉普拉斯类型的能量:加权拉普拉斯能量$ \ MATHSCR {le} _f(g)$,无标志性的Laplacian Energy $ \ MATHSCR {le}^{+} {+} {+} _ f(g)$ $ \ mathscr {lel} _f(g)$被引入和研究。我们获得$ \ Mathscr {ie} _f(g)$和$ \ Mathscr {lel} _f(g)$的渐近值,以及$ \ Mathscr {le} _f(g)$和$ \ Mathscr {le} _f(g)$和$ \ Mathscr {le} _f {le} _f^{le} _f^{+i} $ iffect( d_j)$仅取决于$ d(i,j)$。结果,我们几乎可以理解所有图表$ g_p \ in \ Mathcal {g} _ {n,p} $,矩阵的能量具有$ g_p $,$ g_p $,$ \ nathscr {e}(w_f(g_p))<\ nathscr cr ofers le} lap le} lap(w_f(g_p))的能量($ g_p $这是Gutman等人对猜想的概括。
Let $f(D(i, j), d_i, d_j)$ be a real function symmetric in $i$ and $j$ with the property that $f(d, (1+o(1))np, (1+o(1))np)=(1+o(1))f(d, np, np)$ for $d=1,2$. Let $G$ be a graph, $d_i$ denote the degree of a vertex $i$ of $G$ and $D(i, j)$ denote the distance between vertices $i$ and $j$ in $G$. In this paper, we define the $f$-weighted Laplacian matrix for random graphs in the Erd$\ddot{o}$s-R$\acute{e}$nyi random graph model $\mathcal{G}_{n, p}$, where $p\in (0, 1)$ is fixed. Four weighted Laplacian type energies: the weighted Laplacian energy $\mathscr{LE}_f(G)$, weighted signless Laplacian energy $\mathscr{LE}^{+}_f(G)$, weighted incidence energy $\mathscr{IE}_f(G)$ and the weighted Laplacian-energy like invariant $\mathscr{LEL}_f(G)$ are introduced and studied. We obtain the asymptotic values of $\mathscr{IE}_f(G)$ and $\mathscr{LEL}_f(G)$, and the values of $\mathscr{LE}_f(G)$ and $\mathscr{LE}_f^{+}(G)$ under the condition that $f(D(i, j), d_i, d_j)$ is a function dependent only on $D(i, j)$. As a consequence, we get that for almost all graphs $G_p\in \mathcal{G}_{n, p}$, the energy for the matrix with degree-distance-based entries of $G_p$, $\mathscr{E}(W_f(G_p)) < \mathscr{LE}_f(G_p),$ the Laplacian energy of the matrix, which is a generalization of a conjecture by Gutman et al.