论文标题

贝叶斯不确定性定量对2019年冠状病毒疾病区域流行病的新病例的每日预测

Daily Forecasting of New Cases for Regional Epidemics of Coronavirus Disease 2019 with Bayesian Uncertainty Quantification

论文作者

Lin, Yen Ting, Neumann, Jacob, Miller, Ely, Posner, Richard G., Mallela, Abhishek, Safta, Cosmin, Ray, Jaideep, Thakur, Gautam, Chinthavali, Supriya, Hlavacek, William S.

论文摘要

为了提高情境意识和支持基于证据的决策,我们为区域人口中的Covid-19制定了两种类型的数学模型。一种是一个可以校准的拟合函数,可以用两个时间尺度(例如,快速生长和慢速衰减)再现流行曲线。另一个是一个隔间模型,该模型占据了隔离,自我隔离,社会距离,非指数分布的孵化期,无症状的个体以及轻度和严重的症状疾病形式。使用贝叶斯的推论,我们一直在校准我们的模型,以与美国15个人口最多的大都市统计区域的确认病例保持一致,并量化参数估计值的不确定性和未来病例报告的预测。这种在线学习方法可以尽早确定新趋势,尽管有很大的可变性在情况下报告。我们推断出五个大都市地区的新的重要上升趋势,从19日至2020年至6月12日至6月12日。

To increase situational awareness and support evidence-based policy-making, we formulated two types of mathematical models for COVID-19 transmission within a regional population. One is a fitting function that can be calibrated to reproduce an epidemic curve with two timescales (e.g., fast growth and slow decay). The other is a compartmental model that accounts for quarantine, self-isolation, social distancing, a non-exponentially distributed incubation period, asymptomatic individuals, and mild and severe forms of symptomatic disease. Using Bayesian inference, we have been calibrating our models daily for consistency with new reports of confirmed cases from the 15 most populous metropolitan statistical areas in the United States and quantifying uncertainty in parameter estimates and predictions of future case reports. This online learning approach allows for early identification of new trends despite considerable variability in case reporting. We infer new significant upward trends for five of the metropolitan areas starting between 19-April-2020 and 12-June-2020.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源