论文标题

通过协作学习准确的RGB-D显着对象检测

Accurate RGB-D Salient Object Detection via Collaborative Learning

论文作者

Ji, Wei, Li, Jingjing, Zhang, Miao, Piao, Yongri, Lu, Huchuan

论文摘要

从深度图像中嵌入的空间提示中受益,RGB-D显着性检测的最新进展显示出在某些挑战场景上令人印象深刻的能力。但是,仍然有两个限制。一只手是FCN中的合并和升级操作可能会导致对象边界模糊。另一方面,使用额外的深度网络提取深度功能可能会导致高计算和存储成本。测试过程中对深度输入的依赖还限制了当前RGB-D模型的实际应用。在本文中,我们提出了一个新颖的协作学习框架,其中边缘,深度和显着性以更有效的方式利用,从而巧妙地解决了这些问题。明确提取的边缘信息与显着性相同,以更多地重点放在显着区域和对象边界。深度和显着性学习以相互效力的方式创新地整合到高级特征学习过程中。此策略使网络可以使用额外的深度网络和深度输入来进行推断。为此,它使我们的模型更加轻巧,更快,更通用。七个基准数据集的实验结果显示出其出色的性能。

Benefiting from the spatial cues embedded in depth images, recent progress on RGB-D saliency detection shows impressive ability on some challenge scenarios. However, there are still two limitations. One hand is that the pooling and upsampling operations in FCNs might cause blur object boundaries. On the other hand, using an additional depth-network to extract depth features might lead to high computation and storage cost. The reliance on depth inputs during testing also limits the practical applications of current RGB-D models. In this paper, we propose a novel collaborative learning framework where edge, depth and saliency are leveraged in a more efficient way, which solves those problems tactfully. The explicitly extracted edge information goes together with saliency to give more emphasis to the salient regions and object boundaries. Depth and saliency learning is innovatively integrated into the high-level feature learning process in a mutual-benefit manner. This strategy enables the network to be free of using extra depth networks and depth inputs to make inference. To this end, it makes our model more lightweight, faster and more versatile. Experiment results on seven benchmark datasets show its superior performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源