论文标题
出生时揭示星球的人口
Unveiling the Planet Population at Birth
论文作者
论文摘要
小型,近距离球星的半径分布最近被证明是双峰的。光蒸发模型预测了这种双峰性。在光蒸发方案中,有些行星完全剥夺了其原始的H/H/HE气氛,而另一些行星则保留它们。光蒸发模型与观察到的行星种群之间的比较有能力通过标准观测值(例如核心质量分布和核心成分)揭示行星种群无法访问的详细信息。在这项工作中,我们介绍了使用光蒸发演化前向模型的近距离外行星分布的分层推论。我们使用此模型来限制行星分布的核心组成,核心质量和初始大气质量分数。我们发现核心质量分布是峰值的,峰值质量为$ \ sim 4 $ m $ _ \ oplus $。散装核心组成与冰上贫困和``地球'''的岩石/铁混合物一致;发现核心组合中的传播是狭窄的($ \ lyssim 16 \%$ $在2 $σ$水平下的铁质量分数变化),并且与零一致。该结果有利于水/冰不良环境中的核心形成。我们发现,大多数行星具有典型的质量分数为$ \ sim 4 \%$;只有一小部分没有吸收大量H/H/H/H/H/H/H/H/H/H/H/HE。我们发现了四次,因为没有光蒸发形成了许多没有大的H/HE气氛,因此形成了许多超级地铁。最后,我们发现核心核心理论过度预测,H/HE核心的数量会以$ \ sim 5 $的倍数增值,这表明其他质量减少机制(例如``boiloff'')或核心 - 核心理论的修改。
The radius distribution of small, close-in exoplanets has recently been shown to be bimodal. The photoevaporation model predicted this bimodality. In the photoevaporation scenario, some planets are completely stripped of their primordial H/He atmospheres, whereas others retain them. Comparisons between the photoevaporation model and observed planetary populations have the power to unveil details of the planet population inaccessible by standard observations, such as the core mass distribution and core composition. In this work, we present a hierarchical inference analysis on the distribution of close-in exoplanets using forward-models of photoevaporation evolution. We use this model to constrain the planetary distributions for core composition, core mass and initial atmospheric mass fraction. We find that the core-mass distribution is peaked, with a peak-mass of $\sim 4$M$_\oplus$. The bulk core-composition is consistent with a rock/iron mixture that is ice-poor and ``Earth-like''; the spread in core-composition is found to be narrow ($\lesssim 16\%$ variation in iron-mass fraction at the 2$σ$ level) and consistent with zero. This result favours core formation in a water/ice poor environment. We find the majority of planets accreted a H/He envelope with a typical mass fraction of $\sim 4\%$; only a small fraction did not accrete large amounts of H/He and were ``born-rocky''. We find four-times as many super-Earths were formed through photoevaporation, as formed without a large H/He atmosphere. Finally, we find core-accretion theory over-predicts the amount of H/He cores would have accreted by a factor of $\sim 5$, pointing to additional mass-loss mechanisms (e.g. ``boil-off'') or modifications to core-accretion theory.