论文标题
Rogers-Ramanujan类型的偶数分区身份
Even-Odd partition identities of Rogers-Ramanujan type
论文作者
论文摘要
我们证明了一个定理,该定理为罗杰斯·拉马努扬的身份增加了新成员。该新成员对均匀和奇数零件的约束类型进行分区计数。概括这个定理,我们获得了罗杰斯 - 拉曼努扬型的两个分区身份家族。
We prove a theorem which add a new member to Rogers-Ramanujan identities. This new member counts partitions with different type of constraints on even and odd parts. Generalizing this theorem, we obtain two family of partition identities of Rogers-Ramanujan type.