论文标题
多组分T2松弛时间计的模型信息机器学习
Model-Informed Machine Learning for Multi-component T2 Relaxometry
论文作者
论文摘要
从多回波T2磁共振(MR)信号中恢复T2分布具有挑战性,但具有很高的潜力,因为它提供了表征组织微结构的生物标志物,例如髓磷脂水分(MWF)。在这项工作中,我们建议将机器学习和参数(使用生物物理模型从MRI信号拟合)和非参数(从信号中T2分布的非模型拟合)通过使用多层式求助物(MLP)进行分布重新构造的非参数(T2分布的模型拟合)。为了培训我们的网络,我们构建了一个从生物物理模型中得出的广泛合成数据集,以便用\ textIt {a先验}知识来限制\ textit {in Vivo}分布的知识。所提出的方法称为模型的机器学习(MIML),将MR信号作为输入并直接输出相关的T2分布。与非参数和参数方法相比,我们评估了MIML的合成数据,离体扫描以及对健康受试者的高分辨率扫描以及具有多发性硬化症的受试者的高分辨率扫描。在合成数据中,MIML提供了更准确和更精确的噪声分布。在实际数据中,从MIML得出的MWF图表现出对解剖学扫描的最大符合性,与髓磷脂体积的组织学图具有最高的相关性,以及最佳的明确病变可视化和定位,在病变和正常的损伤和正常的组织之间具有出色的对比度。在全脑分析中,MIML分别比非参数和参数方法快22至4980倍。
Recovering the T2 distribution from multi-echo T2 magnetic resonance (MR) signals is challenging but has high potential as it provides biomarkers characterizing the tissue micro-structure, such as the myelin water fraction (MWF). In this work, we propose to combine machine learning and aspects of parametric (fitting from the MRI signal using biophysical models) and non-parametric (model-free fitting of the T2 distribution from the signal) approaches to T2 relaxometry in brain tissue by using a multi-layer perceptron (MLP) for the distribution reconstruction. For training our network, we construct an extensive synthetic dataset derived from biophysical models in order to constrain the outputs with \textit{a priori} knowledge of \textit{in vivo} distributions. The proposed approach, called Model-Informed Machine Learning (MIML), takes as input the MR signal and directly outputs the associated T2 distribution. We evaluate MIML in comparison to non-parametric and parametric approaches on synthetic data, an ex vivo scan, and high-resolution scans of healthy subjects and a subject with Multiple Sclerosis. In synthetic data, MIML provides more accurate and noise-robust distributions. In real data, MWF maps derived from MIML exhibit the greatest conformity to anatomical scans, have the highest correlation to a histological map of myelin volume, and the best unambiguous lesion visualization and localization, with superior contrast between lesions and normal appearing tissue. In whole-brain analysis, MIML is 22 to 4980 times faster than non-parametric and parametric methods, respectively.