论文标题

汉克尔序列的决定因素

Hankel determinants of a Sturmian sequence

论文作者

Song, Haocong, Wu, Wen

论文摘要

令$τ$为$ 1 \至101 $,$ 0 \ to $ 0 \ to 1 $在字母$ \ {0,1 \} $上。 $ \ Mathbf {s} $表示$τ$的$τ$的固定点是Sturmian序列。我们首先使用$ f $ -presentation给出$ \ mathbf {s} $的表征。然后,我们表明,决定因素中零的分布诱导第一个象限中整数晶格的分区。结合了这些属性,我们给出了所有$ m \ ge 0 $和$ n \ ge 1 $的$ \ mathbf {s} $的hankel geligons $ h_ {m,n} $的明确值。

Let $τ$ be the substitution $1\to 101$ and $0\to 1$ on the alphabet $\{0,1\}$. The fixed point of $τ$ leading by 1, denoted by $\mathbf{s}$, is a Sturmian sequence. We first give a characterization of $\mathbf{s}$ using $f$-representation. Then we show that the distribution of zeros in the determinants induces a partition of integer lattices in the first quadrant. Combining those properties, we give the explicit values of the Hankel determinants $H_{m,n}$ of $\mathbf{s}$ for all $m\ge 0$ and $n\ge 1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源