论文标题

学习生成定制的动态3D面部表情

Learning to Generate Customized Dynamic 3D Facial Expressions

论文作者

Potamias, Rolandos Alexandros, Zheng, Jiali, Ploumpis, Stylianos, Bouritsas, Giorgos, Ververas, Evangelos, Zafeiriou, Stefanos

论文摘要

深度学习的最新进展显着推动了一张图像的影片视频动画中的最新技术。在本文中,我们通过研究3D图像到视频翻译,以特别关注4D面部表达式,将这些进步推广到3D域。尽管过去几年对3D面部生成模型进行了广泛的探索,但4D动画仍然相对尚未探索。为此,在这项研究中,我们采用像架构这样的深网编码器,以通过使用单个中性框架以及表达识别来综合现实的高分辨率面部表情。此外,与现有网格样结构(例如图像)的数据相比,处理3D网格仍然是一项非平凡的任务。鉴于Graph Respolutions的网格处理中最新的进展,我们利用了最近引入的可学习操作员,该操作员通过利用局部顶点订购来直接在网格结构上作用。为了使跨受试者概括为4D面部表情,我们使用高分辨率数据集对模型进行了训练,该数据集对180名受试者的六种面部表情进行了4D扫描。实验结果表明,即使对于看不见的受试者,我们的方法也可以保留受试者的身份信息,并产生高质量的表达方式。据我们所知,这是第一个解决4D面部表达综合问题的研究。

Recent advances in deep learning have significantly pushed the state-of-the-art in photorealistic video animation given a single image. In this paper, we extrapolate those advances to the 3D domain, by studying 3D image-to-video translation with a particular focus on 4D facial expressions. Although 3D facial generative models have been widely explored during the past years, 4D animation remains relatively unexplored. To this end, in this study we employ a deep mesh encoder-decoder like architecture to synthesize realistic high resolution facial expressions by using a single neutral frame along with an expression identification. In addition, processing 3D meshes remains a non-trivial task compared to data that live on grid-like structures, such as images. Given the recent progress in mesh processing with graph convolutions, we make use of a recently introduced learnable operator which acts directly on the mesh structure by taking advantage of local vertex orderings. In order to generalize to 4D facial expressions across subjects, we trained our model using a high resolution dataset with 4D scans of six facial expressions from 180 subjects. Experimental results demonstrate that our approach preserves the subject's identity information even for unseen subjects and generates high quality expressions. To the best of our knowledge, this is the first study tackling the problem of 4D facial expression synthesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源