论文标题

RISMA:可重新配置的智能表面,使物联网可以进行大规模访问

RISMA: Reconfigurable Intelligent Surfaces Enabling Beamforming for IoT Massive Access

论文作者

Mursia, Placido, Sciancalepore, Vincenzo, Garcia-Saavedra, Andres, Cottatellucci, Laura, Costa-Perez, Xavier, Gesbert, David

论文摘要

超越5G网络中的大量访问(IoT)代表了传统的带宽限制技术的艰巨挑战。毫米波技术(MMWave)---以更严格的无线电环境中更复杂的无线处理器为代价提供了很大的带宽,这是适应大量物联网的有希望的替代方案,但其成本和功率要求是实践中广泛采用的障碍。在这种情况下,元材料是一种关键的创新,可以通过可重新配置的智能表面(RISS)来应对这一挑战。在本文中,我们应对挑战,研究一个超出5G场景,该场景由多个Antenna基站(BS)组成,该场景(BS)借助Riss提供了一套单套的单人体用户设备(UES),以应对非线途径。具体而言,我们构建了一个数学框架,以共同优化BS和RIS参数的预编码策略,以最大程度地减少系统总和平方误差(SMSE)。这种新颖的方法揭示了用于设计两种算法Risma和Lo-Risma的方便属性,它们能够找到解决我们问题(前者)的简单有效的解决方案,或适应低分辨率RISS(后者)的实用约束。数值结果表明,我们的算法优于不使用RIS(即使使用低分辨率元曲面)的常规基准,其增长率从20%到120%。

Massive access for Internet-of-Things (IoT) in beyond 5G networks represents a daunting challenge for conventional bandwidth-limited technologies. Millimeter-wave technologies (mmWave)---which provide large chunks of bandwidth at the cost of more complex wireless processors in harsher radio environments---is a promising alternative to accommodate massive IoT but its cost and power requirements are an obstacle for wide adoption in practice. In this context, meta-materials arise as a key innovation enabler to address this challenge by Re-configurable Intelligent Surfaces (RISs). In this paper we take on the challenge and study a beyond 5G scenario consisting of a multi-antenna base station (BS) serving a large set of single-antenna user equipments (UEs) with the aid of RISs to cope with non-line-of-sight paths. Specifically, we build a mathematical framework to jointly optimize the precoding strategy of the BS and the RIS parameters in order to minimize the system sum mean squared error (SMSE). This novel approach reveals convenient properties used to design two algorithms, RISMA and Lo-RISMA, which are able to either find simple and efficient solutions to our problem (the former) or accommodate practical constraints with low-resolution RISs (the latter). Numerical results show that our algorithms outperform conventional benchmarks that do not employ RIS (even with low-resolution meta-surfaces) with gains that span from 20% to 120% in sum rate performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源