论文标题

深层学习:合并大规模MIMO通道预测的感官数据

Deep Multimodal Learning: Merging Sensory Data for Massive MIMO Channel Prediction

论文作者

Yang, Yuwen, Gao, Feifei, Xing, Chengwen, An, Jianping, Alkhateeb, Ahmed

论文摘要

智能通信中的现有工作最近尝试了利用多源传感信息(MSI)来改善系统性能的初步尝试。但是,对MSI辅助智能通信的研究尚未探讨如何集成和融合多模式的感觉数据,这激发了我们基于深度多模态学习(DML)的无线通信的系统框架。在本文中,我们首先在基于DML的无线通信框架上介绍了完整的描述和启发式理解,在该框架中,在通信的角度分析了核心设计选择。然后,我们开发了几个基于DML的架构,用于在大量多输入多输出(MIMO)系统中使用各种模态组合和融合水平的渠道预测。大规模MIMO渠道预测的案例研究提供了一个重要的例子,可以在开发其他基于DML的通信技术中遵循。仿真结果表明,所提出的DML框架可以有效利用各种无线通信方案中多模式感觉数据的构建性和互补信息。

Existing work in intelligent communications has recently made preliminary attempts to utilize multi-source sensing information (MSI) to improve the system performance. However, the research on MSI aided intelligent communications has not yet explored how to integrate and fuse the multimodal sensory data, which motivates us to develop a systematic framework for wireless communications based on deep multimodal learning (DML). In this paper, we first present complete descriptions and heuristic understandings on the framework of DML based wireless communications, where core design choices are analyzed in the view of communications. Then, we develop several DML based architectures for channel prediction in massive multiple-input multiple-output (MIMO) systems that leverage various modality combinations and fusion levels. The case study of massive MIMO channel prediction offers an important example that can be followed in developing other DML based communication technologies. Simulations results demonstrate that the proposed DML framework can effectively exploit the constructive and complementary information of multimodal sensory data in various wireless communication scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源