论文标题

带有融合网络的小波通道注意模块用于单图像

Wavelet Channel Attention Module with a Fusion Network for Single Image Deraining

论文作者

Yang, Hao-Hsiang, Yang, Chao-Han Huck, Wang, Yu-Chiang Frank

论文摘要

单图像是一个至关重要的问题,因为雨水严重地退化了图像的可见性,并影响了计算机视觉任务(例如户外监视系统和智能车辆)的执行。在本文中,我们提出了带有融合网络的新型卷积神经网络(CNN),称为小波通道注意模块。小波变换和逆小波变换被取代进行下采样和上采样,因此小波变换的特征图和卷积包含不同的频率和尺度。此外,特征图是通过通道注意集成的。我们提出的网络学习了来自原始图像的小波变换的四个子带图像的置信图。最后,可以通过小波重建和低频部分和高频零件的融合来很好地恢复清晰的图像。关于合成和真实图像的几个实验结果表明,所提出的算法的表现优于最先进的方法。

Single image deraining is a crucial problem because rain severely degenerates the visibility of images and affects the performance of computer vision tasks like outdoor surveillance systems and intelligent vehicles. In this paper, we propose the new convolutional neural network (CNN) called the wavelet channel attention module with a fusion network. Wavelet transform and the inverse wavelet transform are substituted for down-sampling and up-sampling so feature maps from the wavelet transform and convolutions contain different frequencies and scales. Furthermore, feature maps are integrated by channel attention. Our proposed network learns confidence maps of four sub-band images derived from the wavelet transform of the original images. Finally, the clear image can be well restored via the wavelet reconstruction and fusion of the low-frequency part and high-frequency parts. Several experimental results on synthetic and real images present that the proposed algorithm outperforms state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源