论文标题

流程授权II:无向图

Flow-augmentation II: Undirected graphs

论文作者

Kim, Eun Jung, Kratsch, Stefan, Pilipczuk, Marcin, Wahlström, Magnus

论文摘要

我们提出了最近引入的流量调节技术的无方向版本:给定一个无方向的多式$ g $,带有杰出的顶点$ s,t in v(g)$和一个整数$ k $,一个人可以在随机$ k^{o(1)} \ cdot(g)$ k^{o(g)$ + | + | e(g)$ seps a in Anit seps a seps a seps a seps a seps a。 \ binom {v(g)} {2} $使以下内容:对于最小的最小值$ st $ -cut $ s-cut $ z $ in $ g $ in $ g $,最多$ k $,$ z $,$ z $成为$ s $和$ s $ s $ s $和$ t $ t $ in $ s $ g+a $(即$ a $ a $ a $ a $ a $ a $ a) $ 2^{ - o(k \ log k)} $。 与有向图的版本[Stoc 2022]相比,此处介绍的版本提高了成功概率($ 2^{ - O(k \ log k)} $,而不是$ 2^{ - o(k^4 \ log k)} $),对跑步时间的图表大小的线性依赖性,并且可以说是简单的。 直接推论是可以在无方向图上以随机fpt时间$ 2^{o(k \ log k)}(| v(g)|+| e(g)|)$ 2^{o(k \ log k)}以随机fpt时间$ 2^{o(k \ log k)}来解决。

We present an undirected version of the recently introduced flow-augmentation technique: Given an undirected multigraph $G$ with distinguished vertices $s,t \in V(G)$ and an integer $k$, one can in randomized $k^{O(1)} \cdot (|V(G)| + |E(G)|)$ time sample a set $A \subseteq \binom{V(G)}{2}$ such that the following holds: for every inclusion-wise minimal $st$-cut $Z$ in $G$ of cardinality at most $k$, $Z$ becomes a minimum-cardinality cut between $s$ and $t$ in $G+A$ (i.e., in the multigraph $G$ with all edges of $A$ added) with probability $2^{-O(k \log k)}$. Compared to the version for directed graphs [STOC 2022], the version presented here has improved success probability ($2^{-O(k \log k)}$ instead of $2^{-O(k^4 \log k)}$), linear dependency on the graph size in the running time bound, and an arguably simpler proof. An immediate corollary is that the Bi-objective $st$-Cut problem can be solved in randomized FPT time $2^{O(k \log k)} (|V(G)|+|E(G)|)$ on undirected graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源