论文标题
Reissner-Nordström,Kerr-Newman和Kerr-sen Spacetime中带电粒子的ISCO
The ISCO of charged particles in Reissner-Nordström, Kerr-Newman and Kerr-Sen spacetime
论文作者
论文摘要
在本文中,我们研究了电荷的电荷重新装丝 - 纽德斯特斯特斯特赛车,Kerr-Newman Spacetime和Kerr-sen Sens时段中电荷颗粒的最内向稳定圆轨道(ISCO)。我们发现,在有吸引力的库仑相互作用$ qq <0 $的情况下,ISCO的半径随着颗粒黑色电荷产品的增加而增加。对于排斥性的库仑相互作用,ISCO半径首先降低至最小值,然后再次增加,直到随着电荷产物接近一个,直到它发生差异。如果黑洞的充电$ q $很小,则ISCO半径的最低限度为$ qq = 0 $。排斥和吸引人的库仑相互作用始终将ISCO半径在此限制下增加。带电颗粒的稳定界限轨道在Reissner-Nordström和Kerr-Newman Spacetime中不再存在,价格为$ qq \ geq 1 $。在Kerr-sen时空中,限制情况取决于黑洞的电荷以及是否将DILATON耦合应用于测试粒子。我们发现$ qq \ geq 1+q^2 $无diLaton-coupling和$ qq \ geq 1+ \ frac {3} {2} {2} q^2 $,带有dilaton耦合$α= 1 $。
In this article we study the innermost stable circular orbit (ISCO) of electrically charged particles in the electrically charged Reissner-Nordström spacetime, the Kerr-Newman spacetime and the Kerr-Sen spacetime. We find that the radius of the ISCO increases with an increasing particle-black hole charge product $|qQ|$ in the case of attractive Coulomb interaction $qQ<0$. For repulsive Coulomb interaction, the ISCO radius first decreases to a minimum and then increases again, until it diverges as the charge product approaches one. If the charge $Q$ of the black hole is very small, the minimum of the ISCO radius lies at $qQ=0$. Repulsive and attractive Coulomb interactions will always increase the ISCO radius in this limit. Stable bound orbits of charged particles cease to exist in the Reissner-Nordström and Kerr-Newman spacetime for $qQ\geq 1$. In the Kerr-Sen spacetime the limiting case depends on the charge of the black hole and if dilaton coupling is applied to the test particle. We find $qQ\geq 1+Q^2$ without dilaton-coupling and $qQ\geq 1+\frac{3}{2}Q^2$ with dilaton coupling $α=1$.