论文标题

扭转大洞中的黑洞

Black holes in torsion bigravity

论文作者

Nikiforova, Vasilisa, Damour, Thibault

论文摘要

我们研究了四参数的爱因斯坦 - 卡丹型理论类别的球形对称黑洞溶液,称为“扭力bigravity”。这些理论提供了一个几何框架(具有度量和独立的扭转连接),以修改爱因斯坦的理论,该理论具有与双光重力模型相同的频谱。除了Einsteinlike的无质量自旋2激发外,还有一个巨大的自旋2(范围$κ^{ - 1} $)来自扭力部门,而不是来自第二个指标。我们证明了扭转型巨大的三类球形对称黑洞溶液的存在。首先,Schwarzschild解决方案为所有参数的所有值定义了渐近的扭转黑洞。 [我们证明,一个人无法通过添加无限的扭转头发在线性化的水平上畸形施瓦茨柴尔德解。第三,我们发现,在无限范围的极限上,存在一个两参数的渐近平坦扭转型黑洞的家族。后者的黑洞溶液给出了一个有趣的例子,它是非元素(但仍然纯粹是几何)黑洞结构的有趣例子,在考虑一系列宇宙学大小时,它们可能在天体物理上具有相关性。

We study spherically symmetric black hole solutions in a four-parameter Einstein-Cartan-type class of theories, called "torsion bigravity". These theories offer a geometric framework (with a metric and an independent torsionfull connection) for a modification of Einstein's theory that has the same spectrum as bimetric gravity models. In addition to an Einsteinlike massless spin-2 excitation, there is a massive spin-2 one (of range $κ^{-1}$) coming from the torsion sector, rather than from a second metric. We prove the existence of three broad classes of spherically-symmetric black hole solutions in torsion bigravity. First, the Schwarzschild solution defines an asymptotically-flat torsionless black hole for all values of the parameters. [And we prove that one cannot deform a Schwarzschild solution, at the linearized level, by adding an infinitesimal torsion hair.] Second, when considering finite values of the range, we find that there exist non-asymptotically-flat torsion-hairy black holes in a large domain of parameter space. Third, we find that, in the limit of infinite range, there exists a two-parameter family of asymptotically flat torsion-hairy black holes. The latter black hole solutions give an interesting example of non-Einsteinian (but still purely geometric) black hole structures which might be astrophysically relevant when considering a range of cosmological size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源