论文标题

高能限制中的非线性三叉戟:非局部性,库仑字段和重新召集

Nonlinear trident in the high-energy limit: Nonlocality, Coulomb field and resummations

论文作者

Torgrimsson, Greger

论文摘要

我们在高能量极限中研究了激光脉冲中的非线性三叉戟,其中最初的电子在其休息框架中体验到了Schwinger临界场高于Schwinger的电磁场强度。在较低的能量下,主要的贡献来自“两步”部分,但是在高能量限制中,主要的贡献来自一步术语。我们获得了新的近似值来解释三叉戟的高能极限与库仑场的配对生产之间的关系,以及weizsäcker-williams近似的作用,以及为什么它不同意本地稳定范围近似近似的高$χ$限制。我们还表明,在高能量限制中,即使在相当大的$ a_0 $中,在高能量限制中,在大$ A_0 $扩展中的次数订单也非常重要。我们表明,小$ A_0 $扰动系列具有有限的收敛半径,但是使用PADé-Conformal方法,我们获得的重新召集超出了收敛半径,并且与大$ A_0 $近似值具有较大的数值重叠。我们使用Borel-Padé-Conformal方法来恢复小$χ$扩展,并获得高精度至非常大的$χ$。我们还使用基于高几何/Meijer-G和Confluent高几何功能的较新的重新召集方法。

We study nonlinear trident in laser pulses in the high-energy limit, where the initial electron experiences, in its rest frame, an electromagnetic field strength above Schwinger's critical field. At lower energies the dominant contribution comes from the "two-step" part, but in the high-energy limit the dominant contribution comes instead from the one-step term. We obtain new approximations that explain the relation between the high-energy limit of trident and pair production by a Coulomb field, as well as the role of the Weizsäcker-Williams approximation and why it does not agree with the high-$χ$ limit of the locally-constant-field approximation. We also show that the next-to-leading order in the large-$a_0$ expansion is, in the high-energy limit, nonlocal and is numerically very important even for quite large $a_0$. We show that the small-$a_0$ perturbation series has a finite radius of convergence, but using Padé-conformal methods we obtain resummations that go beyond the radius of convergence and have a large numerical overlap with the large-$a_0$ approximation. We use Borel-Padé-conformal methods to resum the small-$χ$ expansion and obtain a high precision up to very large $χ$. We also use newer resummation methods based on hypergeometric/Meijer-G and confluent hypergeometric functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源