论文标题
宏观交通流量建模与物理正规化高斯工艺:广义配方
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: Generalized Formulations
论文作者
论文摘要
尽管经典的交通流(例如二阶宏观)模型和数据驱动(例如机器学习-ML)方法在交通状态估计中取得了成功,但这些方法要么需要做出巨大的努力来进行参数校准,要么缺乏理论解释。为了填补这一研究差距,本研究提出了一个新的建模框架,名为Physics正规化高斯工艺(PRGP)。这种新颖的方法可以将物理模型(即经典交通流模型)编码为高斯过程体系结构,以便使ML训练过程正常。特别是,本研究旨在讨论如何在原始物理模型具有离散配方时开发PRGP模型。然后基于后正规化推理框架,开发了有效的随机优化算法,以最大程度地提高系统可能性的证据。为了证明所提出模型的有效性,本文对从犹他州I-15高速公路收集的现实世界数据集进行了经验研究。结果表明,新的PRGP模型可以以估计精度和输入鲁棒性胜过以前的兼容方法,例如校准的物理模型和纯机器学习方法。
Despite the success of classical traffic flow (e.g., second-order macroscopic) models and data-driven (e.g., Machine Learning - ML) approaches in traffic state estimation, those approaches either require great efforts for parameter calibrations or lack theoretical interpretation. To fill this research gap, this study presents a new modeling framework, named physics regularized Gaussian process (PRGP). This novel approach can encode physics models, i.e., classical traffic flow models, into the Gaussian process architecture and so as to regularize the ML training process. Particularly, this study aims to discuss how to develop a PRGP model when the original physics model is with discrete formulations. Then based on the posterior regularization inference framework, an efficient stochastic optimization algorithm is developed to maximize the evidence lowerbound of the system likelihood. To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset that is collected from a stretch of I-15 freeway, Utah. Results show the new PRGP model can outperform the previous compatible methods, such as calibrated physics models and pure machine learning methods, in estimation precision and input robustness.