论文标题

DLA朝向Q0528-250的性质:高压和强紫外线场通过CI,H2和SIII的激发揭示

Nature of the DLA towards Q0528-250: High pressure and strong UV field revealed by excitation of CI, H2 and SiII

论文作者

Balashev, S. A., Ledoux, C., Noterdaeme, P., Srianand, R., Petitjean, P., Gupta, N.

论文摘要

我们介绍了与近阻尼的lyman-$α$系统相关的单离子硅和中性碳的激发精细结构能水平的检测,$ z _ {\ rm abs} = 2.811 = 2.811 $ to \ qso。该吸收器具有明显的相对速度,该速度与沿着视线朝着类星体(即$ z _ {\ rm abs}> z _ {\ rm em} $的hubble流动不一致。我们测量系统的金属度为$ {\ rm [zn/h]} = -0.68 \ pm 0.02 $。使用SIII和CI的精细结构水平的相对种群,以及H $ _2 $旋转水平的种群,我们限制了气体的物理条件。我们得出$ n _ {\ rm h} = 190^{+70} _ { - 50} $ cm $^{ - 3} $和$ 260^{+30} _ { - 20} $ cm $ cm $ cm $^{ - 3} $的氢数量的氢数密度考虑到每个组件中的动力学温度,$ \ sim 150 $ k,我们在观测值探测的冷中性培养基中推断出高热压值。 Draine单位中UV场的优势是$ i _ {\ rm UV} = 10^{+5} _ { - 3} $和$ 14^{+3} _ { - 3} _ { - 3} $,分别是这两个组件的每个组件。与中间DLA相比,这种增强的紫外线和热压可能是由于类星体的接近性。吸收器的典型大小为$ \ sim 10^4 $ a.u.假设紫外线磁通由类星体主导,我们将类星体和吸收器之间的距离限制为$ \ sim 150-200 $ kpc。这有利于一种场景,其中吸收发生在位于类星体宿主星系所在的组中的同伴星系中。这与发射研究相一致,揭示了在类星体周围存在几个星系。

We present the detection of excited fine-structure energy levels of singly-ionized silicon and neutral carbon associated with the proximate damped Lyman-$α$ system at $z_{\rm abs}=2.811$ towards \qso. This absorber has an apparent relative velocity that is inconsistent with the Hubble flow indicating motion along the line-of-sight towards the quasar, i.e., $z_{\rm abs}>z_{\rm em}$. We measure the metallicity of the system to be ${\rm [Zn/H]}=-0.68\pm 0.02$. Using the relative populations of the fine-structure levels of SiII and CI, as well as the populations of H$_2$ rotational levels, we constrain the physical conditions of the gas. We derive hydrogen number densities of $n_{\rm H}=190^{+70}_{-50}$ cm$^{-3}$ and $260^{+30}_{-20}$ cm$^{-3}$ in two velocity components where both CI and H$_2$ are detected. Taking into account the kinetic temperature in each component, $\sim 150$K, we infer high values of thermal pressure in the cold neutral medium probed by the observations. The strengths of the UV field in Draine's unit are $I_{\rm UV} = 10^{+5}_{-3}$ and $14^{+3}_{-3}$ in each of these two components, respectively. Such enhanced UV fluxes and thermal pressure compared to intervening DLAs are likely due to the proximity of the quasar. The typical size of the absorber is $\sim 10^4$ a.u. Assuming the UV flux is dominated by the quasar, we constrain the distance between the quasar and the absorber to be $\sim 150-200$ kpc. This favours a scenario where the absorption occurs in a companion galaxy located in the group where the quasar-host galaxy resides. This is in line with studies in emission that revealed the presence of several galaxies around the quasar.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源