论文标题
来自经典吉布斯分布的量子本特征
Quantum eigenstates from classical Gibbs distributions
论文作者
论文摘要
我们讨论波函数的语言(状态向量)和相关的非公认遗传操作员如何通过将反向wigner-weyl变换应用于相空间概率分布和可观察到的情况下,自然而然地从经典的力学中出现。用这种语言,schrödinger方程从liouville方程式开始,现在有$ \ hbar $是免费参数。经典的固定分布可以表示为带有离散(量化)能量的固定状态的总和,这些状态直接对应于量子本特征状态。有趣的是,现在是经典的力学,可以使明显的负概率占据特征状态,这是Wigner的准稳定性分布中的负概率的双重概率。这些负概率在允许经典分布的足够不确定性时显示出消失。我们表明,对于规范的吉布斯集团,这种对应关系特别明显,在该典型的吉布斯集团中,经典特征态满足了一个积分特征值方程,该方程在由反向温度控制的鞍点近似中降低到schrödinger方程。我们通过表明一些范式示例,例如隧道,浆果阶段,兰道水平,水平统计数据和混乱潜力中的量子本质状态来说明这一对应关系,可以从经典的吉布斯合奏中复制到令人惊讶的精确度,而无需参考量子力学和所有参数(包括$ \ hbar $ \ hbar $ \ hbar os)。
We discuss how the language of wave functions (state vectors) and associated non-commuting Hermitian operators naturally emerges from classical mechanics by applying the inverse Wigner-Weyl transform to the phase space probability distribution and observables. In this language, the Schrödinger equation follows from the Liouville equation, with $\hbar$ now a free parameter. Classical stationary distributions can be represented as sums over stationary states with discrete (quantized) energies, where these states directly correspond to quantum eigenstates. Interestingly, it is now classical mechanics which allows for apparent negative probabilities to occupy eigenstates, dual to the negative probabilities in Wigner's quasiprobability distribution. These negative probabilities are shown to disappear when allowing sufficient uncertainty in the classical distributions. We show that this correspondence is particularly pronounced for canonical Gibbs ensembles, where classical eigenstates satisfy an integral eigenvalue equation that reduces to the Schrödinger equation in a saddle-point approximation controlled by the inverse temperature. We illustrate this correspondence by showing that some paradigmatic examples such as tunneling, band structures, Berry phases, Landau levels, level statistics and quantum eigenstates in chaotic potentials can be reproduced to a surprising precision from a classical Gibbs ensemble, without any reference to quantum mechanics and with all parameters (including $\hbar$) on the order of unity.