论文标题
楔形的两个全息图
Codimension two holography for wedges
论文作者
论文摘要
我们提出了在$ d+1 $尺寸楔形时段的引力理论与$ d-1 $ dimensional CFT之间的重力理论之间的编成两种全息图。将其作为ADS/CFT的概括,我们解释了如何计算双重CFT的自由能,纠缠熵和相关功能。在这种楔形全息图中,全息纠缠熵是通过双重最小化过程计算的。特别是,对于四维重力($ d = 3 $),我们获得了二维CFT,全息纠缠熵完美地重现了全息形成性异常的已知结果。我们还讨论了一个较低的尺寸示例($ d = 2 $),并发现普遍数量自然来自重力,该重力类似于边界熵。此外,我们考虑了洛伦兹广告中的楔形区域的重力,该楔形区域有望对具有空间状边界的CFT双重。我们制定了这种新的全息图,并通过ADS/BCFT结构的灯芯旋转来计算全息纠缠熵。通过共形图,该楔形时段映射到几何形状中,在该几何形状下,没有任何气泡在时间演化下扩展。我们通过CFT计算重现了该重力双重双重双重的全息纠缠熵。
We propose a codimension two holography between a gravitational theory on a $d+1$ dimensional wedge spacetime and a $d-1$ dimensional CFT which lives on the corner of the wedge. Formulating this as a generalization of AdS/CFT, we explain how to compute the free energy, entanglement entropy and correlation functions of the dual CFTs from gravity. In this wedge holography, the holographic entanglement entropy is computed by a double minimization procedure. Especially, for a four dimensional gravity ($d=3$), we obtain a two dimensional CFT and the holographic entanglement entropy perfectly reproduces the known result expected from the holographic conformal anomaly. We also discuss a lower dimensional example ($d=2$) and find that a universal quantity naturally arises from gravity, which is analogous to the boundary entropy. Moreover, we consider a gravity on a wedge region in Lorentzian AdS, which is expected to be dual to a CFT with a space-like boundary. We formulate this new holography and compute the holographic entanglement entropy via a Wick rotation of the AdS/BCFT construction. Via a conformal map, this wedge spacetime is mapped into a geometry where a bubble-of-nothing expands under time evolution. We reproduce the holographic entanglement entropy for this gravity dual via CFT calculations.