论文标题

在非温和的准周期晶格中,广义的aubry-andré自以为是和流动性边缘

Generalized Aubry-André self-duality and Mobility edges in non-Hermitian quasi-periodic lattices

论文作者

Liu, Tong, Guo, Hao, Pu, Yong, Longhi, Stefano

论文摘要

我们证明了在一类具有复杂电势的非热质晶格中存在广义的aubry-andré自以为是的。从自二性关系中,得出了移动边缘的分析表达。与Hermitian系统相比,非热元的移动性边缘不仅与扩展状态分开,而且还表明了复杂和真实的特征力的共存,使得可能是移动性边缘的拓扑表征。提出了一种基于合成光子网格晶格中光脉冲传播的实验方案,建议实施一个非热的准晶体,显示出迁移率。

We demonstrate the existence of generalized Aubry-André self-duality in a class of non-Hermitian quasi-periodic lattices with complex potentials. From the self-duality relations, the analytical expression of mobility edges is derived. Compared to Hermitian systems, mobility edges in non-Hermitian ones not only separate localized from extended states, but also indicate the coexistence of complex and real eigenenergies, making it possible a topological characterization of mobility edges. An experimental scheme, based on optical pulse propagation in synthetic photonic mesh lattices, is suggested to implement a non-Hermitian quasi-crystal displaying mobility edges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源