论文标题

繁殖核希尔伯特空间(RKHS)嵌入方法的近似

Approximations of the Reproducing Kernel Hilbert Space (RKHS) Embedding Method over Manifolds

论文作者

Guo, Jia, Paruchuri, Sai Tej, Kurdila, Andrew J.

论文摘要

繁殖的内核希尔伯特空间(RKHS)嵌入方法是一种最近引入的估计方法,旨在识别非线性一组普通微分方程(ODES)的管理方程中未知或不确定的函数。尽管原始状态估计在欧几里得空间中演变,但该功能估计值是在无限维的RKHS中构建的,必须在实践中近似。当使用沿轨迹观测值以观测值的转移函数定义的基础构建有限维近似时,可以将RKHS嵌入方法理解为数据驱动的方法。本文得出了足够的条件,以确保未知函数的近似值在支持动力学的子手机上收敛于Sobolev Norm中。此外,根据嵌入式歧管中样品的填充距离得出有限维近似值的收敛速率。进行了示例问题的数值模拟,以说明论文中得出的收敛结果的定性性质。

The reproducing kernel Hilbert space (RKHS) embedding method is a recently introduced estimation approach that seeks to identify the unknown or uncertain function in the governing equations of a nonlinear set of ordinary differential equations (ODEs). While the original state estimate evolves in Euclidean space, the function estimate is constructed in an infinite-dimensional RKHS that must be approximated in practice. When a finite-dimensional approximation is constructed using a basis defined in terms of shifted kernel functions centered at the observations along a trajectory, the RKHS embedding method can be understood as a data-driven approach. This paper derives sufficient conditions that ensure that approximations of the unknown function converge in a Sobolev norm over a submanifold that supports the dynamics. Moreover, the rate of convergence for the finite-dimensional approximations is derived in terms of the fill distance of the samples in the embedded manifold. Numerical simulation of an example problem is carried out to illustrate the qualitative nature of convergence results derived in the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源