论文标题
深入加强注意力学习质量感知的视觉识别
Deep Reinforced Attention Learning for Quality-Aware Visual Recognition
论文作者
论文摘要
在本文中,我们基于任何卷积神经网络中中间注意图的弱监督生成机制,并更加直接地披露了注意模块的有效性,以充分利用其潜力。鉴于现有的神经网络配备了任意注意模块,我们介绍了一个元评论家网络,以评估主网络中注意力图的质量。由于我们设计的奖励的离散性,提出的学习方法是在强化学习环境中安排的,在此设置中,注意力参与者和经常性的批评家交替优化,以提供即时的批评和修订,以供临时注意力表示,因此作为深度强化的注意力学习(DREAL)所引起的。它可以普遍应用于具有不同类型的注意模块的网络体系结构,并通过最大程度地提高每个单个注意模块产生的最终识别性能的相对增益来促进其表现能力,如类别和实例识别基准的广泛实验所证明的那样。
In this paper, we build upon the weakly-supervised generation mechanism of intermediate attention maps in any convolutional neural networks and disclose the effectiveness of attention modules more straightforwardly to fully exploit their potential. Given an existing neural network equipped with arbitrary attention modules, we introduce a meta critic network to evaluate the quality of attention maps in the main network. Due to the discreteness of our designed reward, the proposed learning method is arranged in a reinforcement learning setting, where the attention actors and recurrent critics are alternately optimized to provide instant critique and revision for the temporary attention representation, hence coined as Deep REinforced Attention Learning (DREAL). It could be applied universally to network architectures with different types of attention modules and promotes their expressive ability by maximizing the relative gain of the final recognition performance arising from each individual attention module, as demonstrated by extensive experiments on both category and instance recognition benchmarks.