论文标题
使用时间图属性在无许可区块链中检测恶意帐户
Detecting Malicious Accounts in Permissionless Blockchains using Temporal Graph Properties
论文作者
论文摘要
建模帐户作为节点和交易的时间性质是按照指示图中的指示边缘 - 对于区块链,使我们能够了解帐户的行为(恶意或良性)。将帐户视为恶意或良性的预测分类可以帮助无权区块链平台的用户以安全的方式操作。在此激励的基础上,我们在几种已经使用的图形属性(例如节点学位和聚类系数)的基础上引入了时间特征,例如突发和吸引力。使用已确定的功能,我们训练各种机器学习(ML)算法,并识别在检测哪些帐户恶意方面表现最好的算法。然后,在分配恶意标签之前,我们在数据集的不同时间粒度上研究了帐户的行为。对于以太坊区块链,我们确定在整个数据集中 - extratreesClassifier在监督的ML算法中表现最好。另一方面,在整个数据集中的无监督ML算法(例如K-均值)提供的结果上使用余弦相似性,我们能够检测到554个可疑帐户。此外,使用对帐户的行为变更分析,我们确定了814个跨不同时间粒度的独特可疑帐户。
The temporal nature of modeling accounts as nodes and transactions as directed edges in a directed graph -- for a blockchain, enables us to understand the behavior (malicious or benign) of the accounts. Predictive classification of accounts as malicious or benign could help users of the permissionless blockchain platforms to operate in a secure manner. Motivated by this, we introduce temporal features such as burst and attractiveness on top of several already used graph properties such as the node degree and clustering coefficient. Using identified features, we train various Machine Learning (ML) algorithms and identify the algorithm that performs the best in detecting which accounts are malicious. We then study the behavior of the accounts over different temporal granularities of the dataset before assigning them malicious tags. For Ethereum blockchain, we identify that for the entire dataset - the ExtraTreesClassifier performs the best among supervised ML algorithms. On the other hand, using cosine similarity on top of the results provided by unsupervised ML algorithms such as K-Means on the entire dataset, we were able to detect 554 more suspicious accounts. Further, using behavior change analysis for accounts, we identify 814 unique suspicious accounts across different temporal granularities.