论文标题

在dirichlet eta函数的非平凡零上

On the nontrivial zeros of the Dirichlet eta function

论文作者

García-Morales, Vladimir

论文摘要

We construct a two-parameter complex function $η_{κν}:\mathbb{C}\to \mathbb{C}$, $κ\in (0, \infty)$, $ν\in (0,\infty)$ that we call a holomorphic nonlinear embedding and that is given by a double series which is absolutely and uniformly convergent on compact sets in the entire复杂平面。功能$η_{κν} $收敛到dirichlet eta函数$η(s)$ as $κ\ to \ infty $。我们证明了至关重要的特性,对于足够大的$κ$,函数$η_{κν}(s)$可以表示为线性组合$η_{κν}(k)= \ sum_ {n = 0}^n = 0}^{\ infty} {\ infty} a_n(κ) $ a_ {n}(κ)\ in \ mathbb {r} $和$ a_ {0} = 1 $),实际上,我们拥有倒数公式$η(s)= \ sum_ {n = 0}^{\ infty}^{\ infty} b_n(κ)b_n(κ) $ b_ {n}(κ)\ in \ mathbb {r} $从$ a_ {n} $递归中获得)。通过使用这些结果以及ETA函数的功能关系,$η(s)=λ(s)η(1-s)$,我们绘制了Riemann假设的证明,在我们的环境中,该假设等同于以下事实。 $η(s^{*})=η(1-s^{*})= 0)$均位于关键行$σ^{*} = \ frac {1} {2} $上。

We construct a two-parameter complex function $η_{κν}:\mathbb{C}\to \mathbb{C}$, $κ\in (0, \infty)$, $ν\in (0,\infty)$ that we call a holomorphic nonlinear embedding and that is given by a double series which is absolutely and uniformly convergent on compact sets in the entire complex plane. The function $η_{κν}$ converges to the Dirichlet eta function $η(s)$ as $κ\to \infty$. We prove the crucial property that, for sufficiently large $κ$, the function $η_{κν}(s)$ can be expressed as a linear combination $η_{κν}(s)=\sum_{n=0}^{\infty}a_n(κ) η(s+2νn)$ of horizontal shifts of the eta function (where $a_{n}(κ) \in \mathbb{R}$ and $a_{0}=1$) and that, indeed, we have the inverse formula $η(s)=\sum_{n=0}^{\infty}b_n(κ) η_{κν}(s+2νn)$ as well (where the coefficients $b_{n}(κ) \in \mathbb{R}$ are obtained from the $a_{n}$'s recursively). By using these results and the functional relationship of the eta function, $η(s)=λ(s)η(1-s)$, we sketch a proof of the Riemann hypothesis which, in our setting, is equivalent to the fact that the nontrivial zeros $s^{*}=σ^{*}+it^{*}$ of $η(s)$ (i.e. those points for which $η(s^{*})=η(1-s^{*})=0)$ are all located on the critical line $σ^{*}=\frac{1}{2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源