论文标题
与生成对抗网络的一致性正规化,用于半监督学习
Consistency Regularization with Generative Adversarial Networks for Semi-Supervised Learning
论文作者
论文摘要
基于生成的对抗网络(GAN)的半监督学习(SSL)方法可通过利用大量未标记的样本以及有限的标记样品来改善分类性能。但是,它们的性能仍然落后于最先进的非机器人SSL方法。我们确定造成这种情况的主要原因是在局部扰动下对同一图像的类概率预测缺乏一致性。遵循一般文献,我们通过标签一致性正则化解决了此问题,该标签一致性正规化强制执行类概率预测,以在各种语义保护下扰动下未改变的输入图像。在这项工作中,我们将一致性正规化介绍到香草半作用中,以解决这一关键限制。特别是,我们提出了一种新的复合一致性正则化方法,在精神上,它利用了局部一致性和插值一致性。我们证明了方法对两个SSL图像分类基准数据集SVHN和CIFAR-10的功效。我们的实验表明,这种新的复合一致性基于半才能可显着提高其性能,并在基于GAN的SSL方法中实现新的最先进性能。
Generative Adversarial Networks (GANs) based semi-supervised learning (SSL) approaches are shown to improve classification performance by utilizing a large number of unlabeled samples in conjunction with limited labeled samples. However, their performance still lags behind the state-of-the-art non-GAN based SSL approaches. We identify that the main reason for this is the lack of consistency in class probability predictions on the same image under local perturbations. Following the general literature, we address this issue via label consistency regularization, which enforces the class probability predictions for an input image to be unchanged under various semantic-preserving perturbations. In this work, we introduce consistency regularization into the vanilla semi-GAN to address this critical limitation. In particular, we present a new composite consistency regularization method which, in spirit, leverages both local consistency and interpolation consistency. We demonstrate the efficacy of our approach on two SSL image classification benchmark datasets, SVHN and CIFAR-10. Our experiments show that this new composite consistency regularization based semi-GAN significantly improves its performance and achieves new state-of-the-art performance among GAN-based SSL approaches.