论文标题
n = 2大n的共形符号理论
N=2 Conformal SYM theories at large N
论文作者
论文摘要
我们考虑一类n = 2个整形型SU(N)在四个维度上与物质,在基本的,两指数对称和反对称表示中的物质,并研究了由Sphere S4上定位提供的相应矩阵模型,该模型在SPHERE S4上提供了相应的矩阵模型,该模型还涉及涉及涉及手法操作员和圆形BPS和圆形BPS和圆形bps和循环的bps和圆形的bps和circtorable的信息。我们回顾并改善了在大N极限中研究矩阵模型的已知技术,从而在扰动理论中为这些可观察到的明确表达了表达。我们根据特征值分布来利用所谓的完整谎言代数方法和更标准的cartan子代数方法中的两种递归方法。仅在n = 4 sym理论中,基本高变量数量的子类别的子类别与N = 4 Sym理论的限制在涉及奇数维度的手性操作员的情况下,其n = 4 sym理论的规模不足。在这种情况下,我们能够得出紧凑的表达式,可以将小't Hooft耦合扩展推向非常高的订单。我们认为,扰动系列具有有限的收敛半径,并将其数值推断为中间耦合。这是对强耦合行为的分析研究的初步研究,这将非常有趣,因为已经提出了此类全息双重的偶性。
We consider a class of N=2 conformal SU(N) SYM theories in four dimensions with matter in the fundamental, two-index symmetric and anti-symmetric representations, and study the corresponding matrix model provided by localization on a sphere S4, which also encodes information on flat-space observables involving chiral operators and circular BPS Wilson loops. We review and improve known techniques for studying the matrix model in the large-N limit, deriving explicit expressions in perturbation theory for these observables. We exploit both recursive methods in the so-called full Lie algebra approach and the more standard Cartan sub-algebra approach based on the eigenvalue distribution. The sub-class of conformal theories for which the number of fundamental hypermultiplets does not scale with N differs in the planar limit from the N=4 SYM theory only in observables involving chiral operators of odd dimension. In this case we are able to derive compact expressions which allow to push the small 't Hooft coupling expansion to very high orders. We argue that the perturbative series have a finite radius of convergence and extrapolate them numerically to intermediate couplings. This is preliminary to an analytic investigation of the strong coupling behavior, which would be very interesting given that for such theories holographic duals have been proposed.