论文标题
神经节:客观地评估通过Nabla-N网络的神经节细胞的密度和分布
GanglionNet: Objectively Assess the Density and Distribution of Ganglion Cells With NABLA-N Network
论文作者
论文摘要
Hirschsprungs病(HD)是一种先天缺陷,由多个医学专业(例如小儿胃肠病学,手术,放射学和病理学)诊断和管理。 HD的特征是在远端肠道中没有神经节细胞,而在相邻上游肠中,神经节细胞数的逐渐归一化,称为过渡区(TZ)。确定的手术治疗以去除异常的肠,需要对TZ的组织学切片中的神经节细胞密度进行准确的评估,这很困难,耗时且容易容易受到操作员错误。我们提出了一种自动化方法,使用基于NABLA_N网络的深度学习(DL)方法(称为Ganglionnet)检测和计算免疫染色的神经节细胞。将形态图像分析方法应用于对细胞计数的区域的细化,并从预测的掩模中定义神经节区域(一组神经节细胞)。拟议的模型是由专家病理学家用单点注释样本训练的。在十个全新的高功率场(HPF)图像上测试了Ganglionnet,尺寸为2560x1920像素,并将输出与专家病理学家的手动计数结果进行了比较。与专家病理学家的计数相比,提出的方法显示了神经节细胞的鲁棒97.49%的检测准确性,这证明了神经节网络的鲁棒性。拟议的基于DL的神经节细胞检测和计数方法将简化和标准化HD患者的TZ诊断。
Hirschsprungs disease (HD) is a birth defect which is diagnosed and managed by multiple medical specialties such as pediatric gastroenterology, surgery, radiology, and pathology. HD is characterized by absence of ganglion cells in the distal intestinal tract with a gradual normalization of ganglion cell numbers in adjacent upstream bowel, termed as the transition zone (TZ). Definitive surgical management to remove the abnormal bowel requires accurate assessment of ganglion cell density in histological sections from the TZ, which is difficult, time-consuming and prone to operator error. We present an automated method to detect and count immunostained ganglion cells using a new NABLA_N network based deep learning (DL) approach, called GanglionNet. The morphological image analysis methods are applied for refinement of the regions for counting of the cells and define ganglia regions (a set of ganglion cells) from the predicted masks. The proposed model is trained with single point annotated samples by the expert pathologist. The GanglionNet is tested on ten completely new High Power Field (HPF) images with dimension of 2560x1920 pixels and the outputs are compared against the manual counting results by the expert pathologist. The proposed method shows a robust 97.49% detection accuracy for ganglion cells, when compared to counts by the expert pathologist, which demonstrates the robustness of GanglionNet. The proposed DL based ganglion cell detection and counting method will simplify and standardize TZ diagnosis for HD patients.