论文标题

AM-GCN:自适应多通道图卷积网络

AM-GCN: Adaptive Multi-channel Graph Convolutional Networks

论文作者

Wang, Xiao, Zhu, Meiqi, Bo, Deyu, Cui, Peng, Shi, Chuan, Pei, Jian

论文摘要

图形卷积网络(GCN)在处理图和网络数据上的各种分析任务方面已广受欢迎。但是,最近的一些研究引起了人们对GCN是否可以将节点特征和拓扑结构与丰富信息一起在复杂图中最佳整合。在本文中,我们首先提出了一项实验研究。令人惊讶的是,我们的实验结果清楚地表明,最先进的GCN在融合节点特征和拓扑结构中的能力与最佳甚至令人满意相距甚远。由于GCN可能无法自适应地学习拓扑结构和节点特征之间的一些深层相关信息,因此弱点可能严重阻碍GCN在某些分类任务中的能力。我们能否补救弱点和设计一种可以保留最先进GCN的优势的新型GCN,同时增强了融合拓扑结构和节点特征的能力?我们应对挑战,并提出一个适应性的多通道图卷积网络,以进行半监视分类(AM-GCN)。核心思想是,我们同时从节点特征,拓扑结构及其组合中提取特定和常见的嵌入,并使用注意机制学习嵌入的自适应重要性权重。我们在基准数据集上进行的广泛实验清楚地表明,AM-GCN提取了来自节点特征和拓扑结构的最相关信息,并以明确的边距提高了分类精度。

Graph Convolutional Networks (GCNs) have gained great popularity in tackling various analytics tasks on graph and network data. However, some recent studies raise concerns about whether GCNs can optimally integrate node features and topological structures in a complex graph with rich information. In this paper, we first present an experimental investigation. Surprisingly, our experimental results clearly show that the capability of the state-of-the-art GCNs in fusing node features and topological structures is distant from optimal or even satisfactory. The weakness may severely hinder the capability of GCNs in some classification tasks, since GCNs may not be able to adaptively learn some deep correlation information between topological structures and node features. Can we remedy the weakness and design a new type of GCNs that can retain the advantages of the state-of-the-art GCNs and, at the same time, enhance the capability of fusing topological structures and node features substantially? We tackle the challenge and propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN). The central idea is that we extract the specific and common embeddings from node features, topological structures, and their combinations simultaneously, and use the attention mechanism to learn adaptive importance weights of the embeddings. Our extensive experiments on benchmark data sets clearly show that AM-GCN extracts the most correlated information from both node features and topological structures substantially, and improves the classification accuracy with a clear margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源