论文标题

与Koopman操作员一起建模和控制自动驾驶汽车的深度神经网络

Deep Neural Networks with Koopman Operators for Modeling and Control of Autonomous Vehicles

论文作者

Xiao, Yongqian, Zhang, Xinglong, Xu, Xin, Liu, Xueqing, Liu, Jiahang

论文摘要

在过去的几十年中,自主驾驶技术受到了显着关注。在自主驾驶系统中,由于车辆动力学的强烈非线性和不确定性,确定运动控制精确的动力学模型是不平凡的。最近的努力已借用用于构建车辆动态模型的机器学习技术,但是仍然需要改进现有方法的概括能力和解释性。在本文中,我们建议使用可解释的Koopman操作员基于深层神经网络的数据驱动的车辆建模方法。使用Koopman操作员的主要优点是表示线性提起的特征空间中的非线性动力学。在拟议的方法中,提出了基于深度学习的扩展动态模式分解算法,以学习Koopman操作员的有限维近似。此外,具有学识渊博的Koopman模型的数据驱动模型预测控制器设计用于跟踪自动驾驶汽车的控制。仿真导致高保真性CARSIM环境表明,我们的方法在广泛的工作范围内表现出高建模精度,并且在建模性能方面优于先前开发的方法。在CARSIM环境中还进行了自动驾驶汽车的路径跟踪测试,结果显示了拟议方法的有效性。

Autonomous driving technologies have received notable attention in the past decades. In autonomous driving systems, identifying a precise dynamical model for motion control is nontrivial due to the strong nonlinearity and uncertainty in vehicle dynamics. Recent efforts have resorted to machine learning techniques for building vehicle dynamical models, but the generalization ability and interpretability of existing methods still need to be improved. In this paper, we propose a data-driven vehicle modeling approach based on deep neural networks with an interpretable Koopman operator. The main advantage of using the Koopman operator is to represent the nonlinear dynamics in a linear lifted feature space. In the proposed approach, a deep learning-based extended dynamic mode decomposition algorithm is presented to learn a finite-dimensional approximation of the Koopman operator. Furthermore, a data-driven model predictive controller with the learned Koopman model is designed for path tracking control of autonomous vehicles. Simulation results in a high-fidelity CarSim environment show that our approach exhibit a high modeling precision at a wide operating range and outperforms previously developed methods in terms of modeling performance. Path tracking tests of the autonomous vehicle are also performed in the CarSim environment and the results show the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源