论文标题

Fujita分解和梅西的纤维品种产品

Fujita decomposition and Massey product for fibered varieties

论文作者

Rizzi, Luca, Zucconi, Francesco

论文摘要

令$ f \ colon x \ to b $为一个可半固定的纤维化,其中$ x $是平滑的尺寸$ n \ geq 2 $和$ b $的平滑曲线。我们为相对$ 1 $形式的本地系统和相对顶级形式提供了结构定理。这给出了$ f_*ω__{x/b} $的第二个富吉塔分解的整洁解释。我们应用解释以表明较高的非理性铅笔的存在,归根结底,以及在自然Castelnuovo型假设上对局部子系统的自然单肌表示的有限性。最后,如果$ b = \ mathbb {p}^1 $,我们给出一个标准,即$ x $不是Albanese通用类型。

Let $f\colon X\to B$ be a semistable fibration where $X$ is a smooth variety of dimension $n\geq 2$ and $B$ is a smooth curve. We give the structure theorem for the local system of the relative $1$-forms and of the relative top forms. This gives a neat interpretation of the second Fujita decomposition of $f_*ω_{X/B}$. We apply our interpretation to show the existence, up to base change, of higher irrational pencils and on the finiteness of the associated monodromy representations under natural Castelnuovo-type hypothesis on local subsystems. Finally we give a criterion to have that $X$ is not of Albanese general type if $B=\mathbb{P}^1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源