论文标题
非威尔逊式紫外线完成
Non-Wilsonian ultraviolet completion via transseries
论文作者
论文摘要
当通过Borel-Ecalle重新召集增强时,我们研究了对扰动重新归一化程序的一些影响。我们显示了标量$ ϕ^4 $模型的一种新型非扰动固定点的出现,代表了跨性别的紫外线自我完成。我们认为,这一完成纯粹是非威尔逊式的,这取决于一个任意常数,这是由重新归一化组方程的跨系解决方案引起的。另一方面,如果通过调整此任意常数不需要固定点,我们最终得到了一个有效的理论,即标量质量对截止值二次敏感,甚至在维度正则化中也起作用。标量质量对该能量量表的完全解耦可用于确定肾小球在非含量不含的模型中重新召集肾小管的物理处方。我们还对文献中可能的正交场景发表评论,当不存在固定点时,可能会发挥作用。
We study some of the implications for the perturbative renormalization program when augmented with the Borel-Ecalle resummation. We show the emergence of a new kind of non-perturbative fixed point for the scalar $ϕ^4$ model, representing an ultraviolet self-completion by transseries. We argue that this completion is purely non-Wilsonian and it depends on one arbitrary constant stemming from the transseries solution of the renormalization group equation. On the other hand, if no fixed points are demanded through the adjustment of this arbitrary constant, we end up with an effective theory in which the scalar mass is quadratically-sensitive to the cut-off, even working in dimensional regularization. Complete decoupling of the scalar mass to this energy scale can be used to determine a physical prescription for the Borel-Laplace resummation of the renormalons in non-asymptotically free models. We also comment on possible orthogonal scenarios available in the literature that might play a role when no fixed points exist.