论文标题

关于地球观察过程的高斯过程的观点

A Perspective on Gaussian Processes for Earth Observation

论文作者

Camps-Valls, Gustau, Sejdinovic, Dino, Runge, Jakob, Reichstein, Markus

论文摘要

空降和卫星遥感和原位观测的地球观察(EO)在监测我们的星球方面起着基本作用。在过去的十年中,尤其是机器学习和高斯过程(GPS)在以时间分辨的方式估算从本地和全局尺度上从本地和全局尺度上从获得的图像中估算出出色的结果。全科医生不仅提供准确的估计值,而且提供对预测的原则不确定性估计值,可以轻松适应来自不同传感器和多个乘法获取的多模式数据,允许引入物理知识以及对不确定性量化和错误传播的正式处理。尽管前进和反向建模取得了长足的进步,但GP模型仍然必须面临重要的挑战,这些挑战在此观点论文中得到了修订。 GP模型应演变为数据驱动的物理感知模型,这些模型尊重信号特征,与物理基本定律并从纯回归转变为观察性因果推断。

Earth observation (EO) by airborne and satellite remote sensing and in-situ observations play a fundamental role in monitoring our planet. In the last decade, machine learning and Gaussian processes (GPs) in particular has attained outstanding results in the estimation of bio-geo-physical variables from the acquired images at local and global scales in a time-resolved manner. GPs provide not only accurate estimates but also principled uncertainty estimates for the predictions, can easily accommodate multimodal data coming from different sensors and from multitemporal acquisitions, allow the introduction of physical knowledge, and a formal treatment of uncertainty quantification and error propagation. Despite great advances in forward and inverse modelling, GP models still have to face important challenges that are revised in this perspective paper. GP models should evolve towards data-driven physics-aware models that respect signal characteristics, be consistent with elementary laws of physics, and move from pure regression to observational causal inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源