论文标题

玻尔兹曼的机器学习具有变异量子算法

Boltzmann machine learning with a variational quantum algorithm

论文作者

Shingu, Yuta, Seki, Yuya, Watabe, Shohei, Endo, Suguru, Matsuzaki, Yuichiro, Kawabata, Shiro, Nikuni, Tetsuro, Hakoshima, Hideaki

论文摘要

Boltzmann Machine是一种强大的工具,用于建模控制培训数据的概率分布。热平衡状态通常用于Boltzmann机器学习以获得合适的概率分布。 Boltzmann机器学习包括根据热平均值来计算给出的损耗函数的梯度,这是最耗时的过程。在这里,我们提出了一种通过使用嘈杂的中间尺度量子(NISQ)设备来实现玻尔兹曼机器学习的方法。我们准备一个具有相同振幅的所有可能的计算基础状态的初始纯状态,并应用变异的假想时间模拟。在计算基础上演变后的状态读数近似于用于Boltzmann机器学习的热平衡状态的概率分布。实际上,我们执行了计划的数值模拟,并确认Boltzmann机器的学习良好。

Boltzmann machine is a powerful tool for modeling probability distributions that govern the training data. A thermal equilibrium state is typically used for Boltzmann machine learning to obtain a suitable probability distribution. The Boltzmann machine learning consists of calculating the gradient of the loss function given in terms of the thermal average, which is the most time consuming procedure. Here, we propose a method to implement the Boltzmann machine learning by using Noisy Intermediate-Scale Quantum (NISQ) devices. We prepare an initial pure state that contains all possible computational basis states with the same amplitude, and apply a variational imaginary time simulation. Readout of the state after the evolution in the computational basis approximates the probability distribution of the thermal equilibrium state that is used for the Boltzmann machine learning. We actually perform the numerical simulations of our scheme and confirm that the Boltzmann machine learning works well by our scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源