论文标题

使用蒙特卡洛树搜索学习黑盒优化的搜索空间分区

Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search

论文作者

Wang, Linnan, Fonseca, Rodrigo, Tian, Yuandong

论文摘要

高维黑盒优化具有广泛的应用,但仍然是一个具有挑战性的问题。给定一组样品$ \ {\ vx_i,y_i \} $,构建一个全局模型(例如贝叶斯优化(BO))在高维搜索空间中遭受了维度的诅咒,而贪婪的搜索可能会导致次级优势。通过将搜索空间递归分为具有高功能值的区域,最近的作品(如Lanas)在神经体系结构搜索(NAS)中表现出良好的性能,从而从经验上降低了样本的复杂性。在本文中,我们将LANAS扩展到其他领域的LA-MCT。与以前的方法不同,LA-MCT使用一些样本及其功能值以在线方式学习了搜索空间的分区。尽管Lanas使用线性分区并在每个区域进行统一的采样,但我们的LA-MCT采用了非线性决策边界,并学习了当地模型来选择良好的候选者。如果非线性分区函数和本地模型与地面黑框函数非常吻合,则可以使用较少的样本来达到良好的分区和候选物。 LA-MCT通过使用现有的Black-Box优化器(例如BO,Turbo)作为其本地模型,用作\ EMPH {meta-Algorithm},在一般的黑盒优化和加强学习基准中实现了强大的性能,尤其是用于高维问题。

High dimensional black-box optimization has broad applications but remains a challenging problem to solve. Given a set of samples $\{\vx_i, y_i\}$, building a global model (like Bayesian Optimization (BO)) suffers from the curse of dimensionality in the high-dimensional search space, while a greedy search may lead to sub-optimality. By recursively splitting the search space into regions with high/low function values, recent works like LaNAS shows good performance in Neural Architecture Search (NAS), reducing the sample complexity empirically. In this paper, we coin LA-MCTS that extends LaNAS to other domains. Unlike previous approaches, LA-MCTS learns the partition of the search space using a few samples and their function values in an online fashion. While LaNAS uses linear partition and performs uniform sampling in each region, our LA-MCTS adopts a nonlinear decision boundary and learns a local model to pick good candidates. If the nonlinear partition function and the local model fits well with ground-truth black-box function, then good partitions and candidates can be reached with much fewer samples. LA-MCTS serves as a \emph{meta-algorithm} by using existing black-box optimizers (e.g., BO, TuRBO) as its local models, achieving strong performance in general black-box optimization and reinforcement learning benchmarks, in particular for high-dimensional problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源