论文标题

弱水平不变双类的模型结构

A model structure for weakly horizontally invariant double categories

论文作者

Moser, Lyne, Sarazola, Maru, Verdugo, Paula

论文摘要

我们在双类别的类别$ \ mathrm {dblcat} $和双函子上构建模型结构,其琐碎的纤维是在对象上溢出的双函子,在水平和垂直形态上充满了对象,并且完全忠于正方形。并且其纤毛物体是弱水平不变的双重类别。 We show that the functor $\mathbb H^{\simeq}\colon \mathrm{2Cat}\to \mathrm{DblCat}$, a more homotopical version of the usual horizo​​ntal embedding $\mathbb H$, is right Quillen and homotopically fully faithful when considering Lack's model structure on $ \ mathrm {2cat} $。特别是,$ \ mathbb h^{\ simeq} $展示了$ \ mathbb h $的级别纤维替代品。此外,从$ \ Mathbb H^{\ simeq} $沿$ \ Mathrm {2CAT} $上的Lack Model结构沿$ \ Mathbb H^{\ simeq} $右引起。 我们还表明,相对于Böhm的灰色张量产品,这种模型结构是单体的。最后,我们证明了一个白头定理,该定理表征了弱源的弱等价,是双函子,该双函子接收伪逆至水平伪自然等效性。

We construct a model structure on the category $\mathrm{DblCat}$ of double categories and double functors, whose trivial fibrations are the double functors that are surjective on objects, full on horizontal and vertical morphisms, and fully faithful on squares; and whose fibrant objects are the weakly horizontally invariant double categories. We show that the functor $\mathbb H^{\simeq}\colon \mathrm{2Cat}\to \mathrm{DblCat}$, a more homotopical version of the usual horizontal embedding $\mathbb H$, is right Quillen and homotopically fully faithful when considering Lack's model structure on $\mathrm{2Cat}$. In particular, $\mathbb H^{\simeq}$ exhibits a levelwise fibrant replacement of $\mathbb H$. Moreover, Lack's model structure on $\mathrm{2Cat}$ is right-induced along $\mathbb H^{\simeq}$ from the model structure for weakly horizontally invariant double categories. We also show that this model structure is monoidal with respect to Böhm's Gray tensor product. Finally, we prove a Whitehead Theorem characterizing the weak equivalences with fibrant source as the double functors which admit a pseudo inverse up to horizontal pseudo natural equivalence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源