论文标题
顺序的贝叶斯最佳实验设计,用于结构可靠性分析
Sequential Bayesian optimal experimental design for structural reliability analysis
论文作者
论文摘要
结构可靠性分析与$ p(g(\ textbf {x})\ leq 0)$估计发生的关键事件的概率有关,对于某些$ n $ -n $ -Dimensional随机变量$ \ textbf {x} $和一些真实的功能$ g $。在许多应用程序中,功能$ g $实际上是未知的,因为功能评估涉及耗时的数值模拟或某些其他形式的实验,这些实验的执行费用很高。我们在本文中解决的问题是如何以贝叶斯决策理论方式设计实验,而目标是估算概率$ p(g(\ textbf {x})\ leq 0)$,以最少的资源来估算概率。与为此目的提出的现有方法相反,我们考虑了以层次形式给出的一般结构可靠性模型。因此,我们介绍了实验设计问题的一般公式,其中我们将与随机变量$ \ textbf {x} $相关的不确定性与我们希望通过实验减少的任何其他认知不确定性有关。如果我们想应用搜索最佳策略的算法,则通过衡量残余不确定性来评估设计策略的有效性,并且该数量的有效近似至关重要。我们提出的方法是基于重要性抽样与认知不确定性传播的无混音转换相结合的。我们为近视(一步前进)的替代方案实施了这一点,并通过一系列数值实验证明了有效性。
Structural reliability analysis is concerned with estimation of the probability of a critical event taking place, described by $P(g(\textbf{X}) \leq 0)$ for some $n$-dimensional random variable $\textbf{X}$ and some real-valued function $g$. In many applications the function $g$ is practically unknown, as function evaluation involves time consuming numerical simulation or some other form of experiment that is expensive to perform. The problem we address in this paper is how to optimally design experiments, in a Bayesian decision theoretic fashion, when the goal is to estimate the probability $P(g(\textbf{X}) \leq 0)$ using a minimal amount of resources. As opposed to existing methods that have been proposed for this purpose, we consider a general structural reliability model given in hierarchical form. We therefore introduce a general formulation of the experimental design problem, where we distinguish between the uncertainty related to the random variable $\textbf{X}$ and any additional epistemic uncertainty that we want to reduce through experimentation. The effectiveness of a design strategy is evaluated through a measure of residual uncertainty, and efficient approximation of this quantity is crucial if we want to apply algorithms that search for an optimal strategy. The method we propose is based on importance sampling combined with the unscented transform for epistemic uncertainty propagation. We implement this for the myopic (one-step look ahead) alternative, and demonstrate the effectiveness through a series of numerical experiments.