论文标题

迈向数字病理学中的可解释图表

Towards Explainable Graph Representations in Digital Pathology

论文作者

Jaume, Guillaume, Pati, Pushpak, Foncubierta-Rodriguez, Antonio, Feroce, Florinda, Scognamiglio, Giosue, Anniciello, Anna Maria, Thiran, Jean-Philippe, Goksel, Orcun, Gabrani, Maria

论文摘要

数字病理学(DP)中机器学习(ML)技术的解释性对于促进其在诊所的广泛采用至关重要。最近,已采用编码相关生物实体的图形技术来表示和评估DP图像。从像素方面到实体分析,这种范式的转变提供了对概念表示的更多控制。在本文中,我们介绍了一个事后解释器,以得出强调图表中诊断重要的实体的紧凑型综合解释。尽管我们将分析集中在乳腺癌亚型中的细胞和细胞相互作用上,但提出的解释器足以扩展到DP中的其他拓扑表示。定性和定量分析证明了解释者在产生全面和紧凑的解释方面的功效。

Explainability of machine learning (ML) techniques in digital pathology (DP) is of great significance to facilitate their wide adoption in clinics. Recently, graph techniques encoding relevant biological entities have been employed to represent and assess DP images. Such paradigm shift from pixel-wise to entity-wise analysis provides more control over concept representation. In this paper, we introduce a post-hoc explainer to derive compact per-instance explanations emphasizing diagnostically important entities in the graph. Although we focus our analyses to cells and cellular interactions in breast cancer subtyping, the proposed explainer is generic enough to be extended to other topological representations in DP. Qualitative and quantitative analyses demonstrate the efficacy of the explainer in generating comprehensive and compact explanations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源