论文标题

基于全局优化的有限元模型更新方法

A finite element model updating method based on global optimization

论文作者

Girardi, Maria, Padovani, Cristina, Pellegrini, Daniele, Robol, Leonardo

论文摘要

线性弹性材料制成的结构的有限元模型更新基于最小化问题的解决方案。目的是找到有限元模型(弹性模量,质量密度,约束和边界条件)的一些未知参数,以最大程度地减少目标函数,以评估实验和数值动态属性之间的差异。目标函数非线性取决于参数,并且可能具有多个局部最低点。本文提出了一种能够找到全球最小点并评估其可靠性的数值方法。数值方法已在两个模拟示例(一个砌体塔和一个圆顶寺庙)上进行了测试,并通过通用的遗传算法和全球灵敏度分析工具进行了验证。还已经解决了在操作条件下监控的实际案例研究,并且在模型更新过程中使用了结构的实验模态性能,以估计其组成材料的机械性能。

Finite element model updating of a structure made of linear elastic materials is based on the solution of a minimization problem. The goal is to find some unknown parameters of the finite element model (elastic moduli, mass densities, constraints and boundary conditions) that minimize an objective function which evaluates the discrepancy between experimental and numerical dynamic properties. The objective function depends nonlinearly on the parameters and may have multiple local minimum points. This paper presents a numerical method able to find a global minimum point and assess its reliability. The numerical method has been tested on two simulated examples - a masonry tower and a domed temple - and validated via a generic genetic algorithm and a global sensitivity analysis tool. A real case study monitored under operational conditions has also been addressed, and the structure's experimental modal properties have been used in the model updating procedure to estimate the mechanical properties of its constituent materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源